
 

   
  

low Energy COnsumption NETworks 

DELIVERABLE D5.5 

PROTOCOL EXTENSIONS 

 

 

Grant Agreement Number: 258454 

Project Acronym: ECONET 

Project Title: low Energy COnsumption NETworks 

Funding Scheme: Collaborative Project 

Starting Date of the Project: 01/10/2010 dd/mm/yyyy 

Duration: 36 months (original), 39 months (amendment request) 

Project Coordinator: 

Name: Raffaele Bolla 

Phone: +39 010 353 2075 

Fax: +39 010 353 2154 

e-mail: raffaele.bolla@unige.it 

 

Due Date of Delivery: M33 Mx (30/06/2013 dd/mm/yyyy) 

Actual Date of Delivery: 04/07/2013 dd/mm/yyyy 

Workpackage: WP5 – Green Strategies at the Control Plane 

Nature of the Deliverable: R 

Dissemination level: PU 

Editors: ALU, CNIT, MLX, TEI, NVR 

Version: 1.0 

 

 



 

Page 2 of 49 

  FP7-ICT-258454    D5.5 

Disclaimer 

The information, documentation and figures available in this deliverable are written by the 

ECONET Consortium partners under EC co-financing (project FP7-ICT-258454) and do not 

necessarily reflect the view of the European Commission. 

The information in this document is provided “as is”, and no guarantee or warranty is given that 

the information is fit for any particular purpose. The reader uses the information at his/her sole risk 

and liability. 

Copyright 

Copyright © 2013 the ECONET Consortium. All rights reserved. 

The ECONET Consortium consists of: 

CONSORZIO NAZIONALE INTERUNIVERSITARIO PER LE TELECOMUNICAZIONI, 

ALCATEL-LUCENT ITALIA S.p.A., 

MELLANOX TECHNOLOGIES LTD - MLNX, 

LANTIQ Deutschland GmbH, 

ERICSSON TELECOMUNICAZIONI, 

TELECOM ITALIA S.p.A., 

GREEK RESEARCH AND TECHNOLOGY NETWORK S.A., 

NAUKOWA I AKADEMICKA SIEC KOMPUTEROWA, 

DUBLIN CITY UNIVERSITY, 

TEKNOLOGIAN TUTKIMUSKESKUS VTT, 

POLITECHNIKA WARSZAWSKA, 

NETVISOR INFORMATIKAI ES KOMMUNIKACIOS ZARTKORUEN MUKODO 

RESZVENYTARSASAG, 

ETHERNITY NETWORKS LTD, 

LIGHTCOMM S.R.L., 

INFOCOM S.R.L. 

This document may not be copied, reproduced or modified in whole or in part for any purpose 

without written permission from the ECONET Consortium. In addition to such written permission 

to copy, reproduce or modify this document in whole or part, an acknowledgement of the authors of 

the document and all applicable portions of the copyright notice must be clearly referenced. 



 

Page 3 of 49 

  FP7-ICT-258454    D5.5 

Table of Contents 

DISCLAIMER .................................................................................................................................... 2 

COPYRIGHT ..................................................................................................................................... 2 

TABLE OF CONTENTS .................................................................................................................. 3 

1 EXECUTIVE SUMMARY........................................................................................................ 5 

2 INTRODUCTION ...................................................................................................................... 6 

3 CONTROL PLANE REFERENCE ARCHITECTURE........................................................ 7 

3.1 OSPF-TE PROTOCOL EXTENSION .......................................................................................... 8 

3.2 INTERFACING OPTIMIZATION ALGORITHMS ......................................................................... 10 

4 GAL OBJECTS TRANSPORT PROTOCOL FOR NETWORK POWER 

MANAGEMENT ............................................................................................................................. 12 

4.1 GAL BINDINGS FOR XML OVER HTTP REST .................................................................... 13 

4.1.1 Place of the GAL interface within the ECONET management framework .................... 13 

4.1.2 Introduction to the REST-style interfaces ...................................................................... 14 

4.1.3 Further network API bindings for the GAL ................................................................... 15 

4.1.4 The GAL REST XML Tree .............................................................................................. 15 

4.1.5 GAL operations .............................................................................................................. 17 

4.1.6 Distributed GAL access with REST API - concept ........................................................ 20 

4.2 GAL BINDINGS FOR CORBA / TMF-814  (SECTION 2) ......................................................... 21 

4.2.1 Architectural overview ................................................................................................... 21 

4.2.2 SPO1400 energy aware ................................................................................................. 22 

4.2.3 NBI TMF814 Impacts..................................................................................................... 23 

4.3 GAL BINDINGS FOR TR-069 ............................................................................................... 27 

4.3.1 Introduction .................................................................................................................... 27 

4.3.2 Considerations ............................................................................................................... 27 

4.3.3 Solution architecture ...................................................................................................... 27 

4.3.4 Description of the Power Data Model ........................................................................... 28 

4.3.5 Collection of History items ............................................................................................ 29 

5 GREEN EXTENSION OF OPENFLOW .............................................................................. 30 

5.1 INTRODUCTION ................................................................................................................... 30 

5.2 NETWORK PROCESSOR ARCHITECTURE .............................................................................. 32 

5.3 THE OPENFLOW PROTOCOL EXTENSION TOWARDS GREEN CAPABILITIES .......................... 33 

5.4 IN-NETWORK CONSOLIDATION ........................................................................................... 35 

5.5 THE IN-NETWORK CONSOLIDATION ALGORITHM ............................................................... 35 

5.6 TEST RESULTS .................................................................................................................... 37 

6 NETWORK CONNECTIVITY PROXY .............................................................................. 40 

6.1 OVERVIEW .......................................................................................................................... 40 

6.2 NCP SERVICE ..................................................................................................................... 41 

6.2.1 Description ..................................................................................................................... 41 

6.2.2 Supported Actions .......................................................................................................... 42 



 

Page 4 of 49 

  FP7-ICT-258454    D5.5 

6.2.3 Integration of UPnP Actions & NCP Rules ................................................................... 44 

6.3 LOWPOWER SERVICE .......................................................................................................... 45 

6.3.1 Description ..................................................................................................................... 45 

6.3.2 State Variables ............................................................................................................... 46 

6.3.3 Supported Actions .......................................................................................................... 46 

6.4 CONCLUSIONS AND FURTHER WORK .................................................................................... 47 

REFERENCES ................................................................................................................................. 48 

 

  



 

Page 5 of 49 

  FP7-ICT-258454    D5.5 

1 Executive Summary  

Deliverable D5.5 “Protocol Extensions” reports all ECONET developments related to the 

extension of networking protocols with green capabilities. Where possible, this choice has been 

extensively used to support seamless network evolution and to take advantage from protocol 

flexibility (e.g., unused fields/valued). 

Four main areas have been addressed: 

Control Plane extension to carry Power Object information across the network, according to the 

ECONET GAL syntax, being also able to easily integrate optimization algorithms, as reported in 

D5.3. The proposal is - generally speaking - simple, but concretely effective to make the studied 

routing techniques applicable. 

Network Power Monitoring framework, developing adaptation layers between the standard 

GAL interface, defined within the ECONET project, and common management interfaces such as 

Rest/XML, CORBA/TMF 814 and Broadband Forum TR-069/CWMP. This development allows 

interfacing standard available network nodes that have been later on integrated in the ECONET 

demo setup. This work is essential for extending the usage of the GAL interface outside a single 

physical object and then for exploiting its functionalities in complex distributed equipment and at 

the network level. These proposed extensions involve the most used management protocols and 

they contribute to make the GAL adoption a feasible task in a very large number of situations and 

scenarios. 

Green extension of Openflow, enabling the usage of the GAL interface and methods into the 

emerging SDN paradigm. This activity has a twofold value: from one side, it projects the GAL in a 

very hot new network paradigm, SDN, effectively enabling its usage in future advanced equipment 

based on this approach; on the other side, it defines a very innovate way to extend the current 

Openflow protocol and architecture to handle the power management capabilities of the SDN 

devices. This last point might be a focal one in the near future to make the innovative developments 

in this area scalable. 

Finally, the Network Connectivity Proxy protocol has been introduced as a key asset of ECONET 

technology. It is based on a suitable extension of the UPnP standard protocol. Here again, an 

important work that, if concretely adopted, contributes in a valuable manner to make NCPs 

definitely easier to introduce in most of the SOHO contexts. 

Protocol syntax and additional details are provided in a dedicated Annex available as a separate 

document. 

  



 

Page 6 of 49 

  FP7-ICT-258454    D5.5 

2 Introduction  

In the following Sections we address the key topics related to the network control protocol 

extensions required for the support of the network-wide green functionality designed in the scope of 

the ECONET project. 

During the execution of the project, the ECONET team has developed a variety of 

power saving/power management technologies for network devices in the data plane [5]. 

Such technologies can be grouped in three main categories [1]: 

a) Energy-saving solutions working inside the network device, i.e., any hardware technology 

that exploits Adaptive Rate (AR), Low Power Idle (LPI), and Standby primitives.  

These approaches usually tend to be almost completely transparent to the networking 

protocol stack, since they are constrained inside the single device. 

b) Energy-saving solutions working between two devices: this category groups all the 

approaches that can be adopted to save energy in network devices interconnected among 

themselves. Green extensions for link protocols belong to this category, which may include 

also mechanisms/frameworks to trigger wake-up signals and to shape the profiles of 

transmitted traffic, to optimize the behaviour or the “induced” energy consumption of 

directly attached nodes. 

c) Energy-saving solutions that bypass devices or functionalities: this kind of approaches can 

be used at different network layers in order to avoid potential drawbacks caused by the use 

of standby primitives. Bypass approaches can be adopted for maintaining network 

functionalities and services running, when some network devices (or some of their 

components) enter standby mode. In fact, these approaches may allow migrating traffic 

transmission and reception, network protocol execution, and information processing towards 

other devices/components. 

The exploitation of the energy saving techniques that involve two or more network devices (as 

per the solutions (b) and (c) described above) requires the involved devices to exchange information 

relevant to their power states and power management capabilities among themselves and towards 

the network Control Plane. With respect to such issue, in the scope of WP4 activities the ECONET 

Project has designed a standard and general purpose interface, called Green Abstraction Layer - 

GAL (see [1-6]), for exposing the novel green capabilities and functionalities towards control and 

monitoring frameworks.  

The first aim of this deliverable is defining the needed extensions of current network Control and 

Management Plane protocols in order to carry the new data modelled by the GAL, so as to allow 

power network optimization and, more generally, power management. In this respect, the next 

Sections address the following key topics: 

 a suitable Open Shortest Path First – Traffic Engineering (OSPF-TE) protocol extension to 

carry GAL objects for a generic Generalized Multi-Protocol Label Switching (GMPLS) [10] 

network controlled by Path Computation Client/Path Computation Element (PCC/PCE); 

 GAL interfacing / adaptation to different network management protocols to facilitate the 

usage of the GAL technology in real networks; 



 

Page 7 of 49 

  FP7-ICT-258454    D5.5 

 a green extension of the Openflow standard protocol, in accordance to the envisaged 

migration towards Network Functions Virtualization (NFV) and Software Defined Network 

(SDN) paradigms. 

Besides the items listed above, this deliverable also includes the specification for a further control 

protocol extension needed to support a specific energy saving solution, based on the “device 

bypass” technique, developed in the scope of WP3: the Network Connection Proxy (NCP) [1]. The 

NCP function covers devices for network-related tasks whenever they fall in low-power states, so as 

to replace them in keeping their established connections active. The NCP solution designed in the 

scope of the Project has been focused on applications in the Home Network scenario and requires 

an exchange of information between the NCP itself and the covered Home Network Hosts for 

different purposes (as, for instance, mutual discovery, service registration and notification of power 

state transition events). In respect to this, the ECONET team has defined a new profile of the 

widespread Universal Plug and Play (UPnP) protocol to support the NCP specific functionality. 

3 Control Plane reference architecture  

This section introduces a general overview of the Alcatel-Lucent Control Plane (CP) activities in 

implementing the ECONET extensions for control plane protocols. The ALU CP architecture is an 

evolution of the DRAGON (Dynamic Resource Allocation via GMPLS Optical Networks) suite. 

DRAGON is an open source GMPLS control plane that enables dynamic provisioning of network 

resources on an inter-domain basis, across heterogeneous network technologies, opening up the 

creation of dynamic, deterministic, and manageable end-to-end network transport services for high-

end applications. The DRAGON architecture utilizes GMPLS as the basic building block for 

network element control and provisioning. Currently, the DRAGON software architecture is not 

PCC/PCE standard compliant. For ECONET purposes, we extended the original DRAGON 

architecture in order to: 

1. Create a standard PCC/PCE chain [8], communicating via the PCE Protocol (PCEP) [9] 

2. Extend the OSPF-TE protocol (Link State Packets (LSP) and Traffic Engineering 

Database (TED)) in order to inject the green parameters coming from the data-plane (device 

state, power consumption, etc.) into the control plane; 

3. Extend the PCEP protocol in order to guarantee interoperability with other ECONET PCE 

architectures. 

The following Figure 1 shows the generic Alcatel-Lucent CP architecture and communication 

protocols involved. 

 



 

Page 8 of 49 

  FP7-ICT-258454    D5.5 

 

Figure 1: Alcatel-Lucent CP architecture. 

 

The PCE architecture introduces a special computational entity that will cooperate with similar 

entities to compute the best possible path through multiple domains. A PCE is a node that has 

special path computation ability and receives path computation requests from entities known as path 

computation clients (PCCs). The PCE holds limited routing information from other domains, 

allowing it to possibly compute better and shorter inter-domain paths than those obtained using the 

traditional per-domain approach. Among other purposes, PCEs are also being advocated for CPU-

intensive computations, minimal-cost-based TE-LSP placement, backup path computations, and 

bandwidth protection. Along with the process of identifying the requirements and development of 

the architecture accordingly, a plethora of work is underway at the PCE WG on the new 

communication protocols that will make this architecture work. This includes the development of 

new inter-PCE communication protocols and the introduction of extensions to existing underlying 

routing protocols. Request for Comments (RFC) 4655 [8] specifies a PCE-based architecture, while 

RFC 4657 covers PCE communication protocol generic requirements and, finally, RFC 4674 

discusses the requirements for PCE discovery. 

3.1 OSPF-TE protocol extension 

We consider opaque Link State Advertisements (LSA) of the OSPF protocol for implementing 

the proposed GMPLS extensions. New Type, Length, Value (TLVs) are added to the Traffic 

Engineering (TE) extensions for OSPF. The TE-LSA format starts with the standard LSA header, 

with TLVs as payload, as shown in Figure 2. The detailed explanations of each field can be found 

in [10]. TE LSA defined two types of top-level TLVs. We propose to add sub-TLVs to link level 

TLV. Thus, the energy information is carried by setting up new sub-TLVs inside Link TLV (type 2) 

of TE LSAs. The Type field in sub-TLVs is considered in the range 32768-32777, as defined for 

experimental use. Length could be defined as 4 octets, as most of the other sub-TLVs defined in this 

level. Value is defined to carry the energy information. 



 

Page 9 of 49 

  FP7-ICT-258454    D5.5 

It is composed of the following: 

o The energy information, normally a value assigned to represents the power consumption 

[mW] 

o The link status, composed by 12 power status values initially based on the EMAN IETF 

standard [11], is now based on the GAL syntax.  

o The transition time matrix (12x12). 

 

 

Figure 2. TE-LSA format. 

The flooding procedure follows the standard flooding procedure of OSPFv2. In the simulation 

model, no designated routers are selected. Thus, LSAs are flooded in broadcasting manner. 

MinLSInterval defines the minimum time to update the same entry in the Link State Database of 

each node, so that duplicated LSAs received from multiple neighbours can be ignored. After 

receiving a new LSA, the node decides whether to forward the LSA or discard it according to the 

LSA type and the carried timestamp. Link State Database is updated upon receiving valid LSAs. 

According to the definition of sub-TLVs for TE LSA, the defined sub-TLVs may occur at most 

once. TE LSAs are flooded upon changes of contents. The triggers for originating new TE LSAs are 

implemented with fixed time-outs. For nodes that do not support proposed TLVs, the TLVs will be 

ignored. 

Routing calculation is based on the standard Dijkstra algorithm used in the OSPF-TE protocol. 

The “cost” assigned in route calculations will be updated by the energy cost carried in TE LSAs. 

The proposed model defines two types of cost value. These values could represent cheaper energy 

sources (0) and more expensive energy consumption sources (1), which applies to both link and 

node cost. In the proposed model, both link and node energy costs should influence the routing 

decision. However, as Dijkstra’s algorithm considers only one single value per edge, the weight 

assigned to Djikstra’s algorithm should be revised to fit the need. Thus, each edge cost is 

represented by link cost + 0.5 * (source node cost) + 0.5 * (destination node cost). The whole route 

cost will be the sum of all the edges’ costs. In this way, both node energy cost and link energy cost 

are taken into consideration. 



 

Page 10 of 49 

  FP7-ICT-258454    D5.5 

3.2 Interfacing Optimization algorithms 

In order to prove the effectiveness of optimization algorithms in a real network we need to 

identify a clever way to integrate those algorithms in the network management path.  

First, some preliminary considerations: depending on the network size and its dynamicity we 

need to determine a suitable frequency sampling value Fs taking care of traffic behaviour, time to 

transfer network status Sn(t) to the optimization algorithm, time to transfer and implement the new 

network status Sn(t+1). It is clear that if the traffic varies faster than the control loop the 

optimization effort is useless. 

 

Figure 3. Integration of optimization algorithms in real networks 

For large core networks, even if managed by a control plane, we need to apply optimization 

algorithms taking into account “long term” behaviour. The goal is mainly to switch off the unused 

resources, for instance in a night/day behaviour. 

In the scenario of GMPLS networks, described in the previous Section, in order to avoid the 

complex integration process of optimization algorithms, we use the architecture described in 

Figure 3. 

The status of the network, including topology and power consumption figures, is received by the 

optimization algorithm, which elaborates the new optimal (in terms of power consumption) 

configuration. The new configuration is then implemented by using the standard management 

interface. In the specific GMPLS case the explicit route is passed to the control plane to be 

implemented and the unused resources are switched off by using the GAL interface. 

In order to verify the proposed approach, the NASK optimization algorithms has been selected 

and applied to the day/night scenario also used in the final demo of the project. A suitable interface 

(XML based) was defined to exchange information between the control plane and the optimization 

algorithm. The following “snapshot” (see Figure 4) is providing an example of the used syntax to 

pass network information and path setup request to the optimization algorithm. It returns the list of 

links used to implement the path by using power figures as metric. 



 

Page 11 of 49 

  FP7-ICT-258454    D5.5 

ls task // list of completed and ongoing optimization problems, 

stop <task id> // stopping of ongoing task, 

ls network // list of available networks, 

ls router // list of available routers, 

ls card // list of available cards, 

ls link // list of available links, 

ls demand // list of available traffic demands, 

ls EAS // list of available Energy-Aware-States of routers, cards and links 

solve -BB <network name> // Branch and Bound method, 

solve -H <network name> // Heuristic method, 

exit // shutdown 

a) Information and commands to activate network optimization procedure. 

 

 

b) Syntax description of the interface. 

Figure 4. Interface description between Emulated Network and external optimization task. 

Node description syntax

Link description 
syntax

Connection setup 
syntax

Network description 
syntax



 

Page 12 of 49 

  FP7-ICT-258454    D5.5 

4 GAL objects transport protocol for Network Power 
management  

The Green Abstraction Layer (GAL) forms the counterpoint of the research carried out by the 

whole of the ECONET consortium. The GAL is a flexible and modular interface and architecture 

for enhancing telecom network elements with energy awareness and energy-optimized behaviour. 

The GAL is also a hierarchical and orthogonal approach, usable not only for the low, intra-

equipment, level of hardware components (like a device line card controlling the energy-aware 

behaviour of the contained ports), but also at the higher, system-related levels, where devices and 

even Element Managers (EMS) or Network Management Systems (NMS) are controlled and 

monitored by higher-level management entities. 

Besides the similarities of the two scenarios, the two levels of operations also differ, at least in the 

two following main aspects: 

1. The levels of communication (status queries and control commands) are significantly 

different: among the systems, rather than communicating direct port states, and port level 

energy operation modes, here the information is much more strategic in nature, allowing 

space for the extensive GAL capabilities of autonomous decisions and control at the device 

levels and below. 

2. Moreover, in the high-level scenario, the controlled and controlling entities are not located 

in the same hardware system (device), but they are typically network-linked, most typically 

over an IP network. 

While the GAL approach is completely reasonable (considering the amount of data exchanged or 

the state-of-the-art organization of telecommunication networks and management frameworks), this 

opens up another problem of transporting GAL commands (which are originally defined as generic 

library functions), over an IP network, considering all the efficiency, security and domain-isolation 

practices which are very common in telecommunications.  

A few examples: 

 In spite of a broadband connection, elements (e.g., home gateways) in a customer home 

cannot typically be accessed by the operator directly, due to privacy considerations. 

 Some telecom equipment families (including some demo equipment to be used in WP6), do 

not allow a direct management by any external system, but an EMS is provided, which 

accepts instructions only over a certain protocol, like TMF-814 SNMP, Web Services, etc. 

To make the GAL applicable for networks, areas and sets of systems characterized by these 

constraints, protocol extensions and concretizations need to be defined. These definitions can be 

considered as different “bindings” of the GAL concept for different protocol technologies, to make 

them applicable for different scenarios and a priori conditions, similar to the cases described above. 

The purpose of this section is to give an overview and also to describe in detail the concepts and 

implementations of these protocol extensions/bindings, i.e. the GAL implementation for the 

following protocols / technologies: 

1. GAL bindings for XML over HTTP REST (Section 4.1) 

2. GAL bindings for Corba / TMF-814 (Section 4.2) 

3. GAL bindings for TR-069 (Section 4.3) 



 

Page 13 of 49 

  FP7-ICT-258454    D5.5 

4.1 GAL bindings for XML over HTTP REST  

This section specifies the XML/HTTP REST API binding of the GAL Application Programming 

Interface described in D4.3. We consider that document as the conceptual definition of a generic 

network-, device- and sub-device-level power management interface and also a programming 

language-style API definition. 

While D4.3 can be used in rather straightforward way to implement a server library, or write a 

GAL client code  (e.g., in “C” language) as done in D4.4, it does not define any binding for network 

communication between GAL server (e.g., a GAL-aware server) and a GAL network client (e.g., a 

higher level controlling application). 

Here we specify a binding for the GAL that is conceptually equivalent to the D4.3 interface, but it 

is realized by using a network protocol (rather than library calls within runtime) as “vehicle” of 

information exchange. 

4.1.1 Place of the GAL interface within the ECONET management framework  

Being focused on the energy-related information only (states and measurements), the GAL alone 

is not always expected to be used to monitor and manage a complex network of telecommunication 

service devices, but rather it is an extension of other interfaces used for the discovery and 

monitoring of networks from other perspectives (topology, general performance, faults, etc.) 

This is similarly reflected in the ECONET demonstration architecture (see D6.4), where the GAL 

interface described here is one of three interfaces used for communication between the managers 

and the managed networks and elements (see Figure 5): 

 The Topology interface is the principal mechanism for describing the networks, the devices 

(including their internals if necessary), and the interconnections between ports on the 

devices. In addition, the topology information will contain the definition of the GAL 

interface access points available for executing GAL commands (similarly, points of access 

to performance data are also described here). The Topology interface is thus the key for all 

information exchange between the managers and managed systems. 

 The second interface is the GAL itself. 

 The third interface is used to query data from the managed systems (networks, devices, etc.) 

that fall outside of the GAL scope, but that are necessary for demonstrating and evaluating 

the energy-aware behaviour of the devices, especially the impact of the energy states, and 

the consequential trade-offs. Examples of such performance data are momentary latency 

changes, bit rates, temperatures, etc.  

The performance data interface is an auxiliary mechanism, as we expect that a production-scale 

telecom network environment will already have a performance monitoring framework in place. 



 

Page 14 of 49 

  FP7-ICT-258454    D5.5 

 

Figure 5. The GAL and other interfaces in the ECONET architecture. 

This “protocol vehicle” is a set of XML fragments used over a REST-style HTTP client-server 

interface. 

4.1.2 Introduction to the REST-style interfaces 

REST (REpresentational State Transfer), is a popular network API architectural style, which is 

characterized by the consistent usage of the limited HTTP command vocabulary (GET, PUT, 

POST, DELETE, etc.), to implement functionality through a series of read and write operations on 

an object-oriented database. Sections of this database are represented as documents (XML 

documents in our case) during the client-server communication. 

REST is an instance (and competitor) of several similar network API architectural styles, e.g. 

SOAP, CORBA, DCE, and many other proprietary or language-bound alternatives. It advantages 

are: 

 conceptual clarity, 

 fairly easy implementation on both sides, 

 it is suitable for proxying, caching and HTTP-level security enforcement. 

The basis of REST is a conceptual hierarchical “document” which describes the entirety of the 

information covered and handled by the API. We call it in our case the “GAL REST XML tree” 

which describes all information covered by the GAL (including writeable state variables). Since the 

GAL is hierarchical, the tree is also hierarchical: each level represents a GAL resource, with 

children corresponding to the subordinate resources (e.g. devices in a network, or ports on a line 

card, etc.).  The “GAL REST XML tree is detailed described in sub-Section 4.1.4. 



 

Page 15 of 49 

  FP7-ICT-258454    D5.5 

The GAL REST API works by providing access to parts of this tree through HTTP operations. 

For example 

 discovery is a HTTP GET query where the URL path and the URL query parameters 

specifying the information to be returned; 

 provisioning is a HTTP PUT, with the state specified as an XML fragment in the document 

part of the HTTP request; 

 commit and rollback are POST operations. 

In all cases the information returned consists of an error code and/or a document containing the 

data requested, e.g. for successful operations HTTP returns code 200/OK, while operations on non-

existent resources return 404/NOTFOUND, and invalid operations return 401/BAD REQUEST 

status codes. 

Please refer to Section 0. for a detailed description of the operations. 

4.1.3 Further network API bindings for the GAL 

While this document describes the REST API only, it is possible to define alternative network 

protocols with the same functionality. Indeed, we have also considered the definition of further 

“GAL vehicles” like, for example: 

 An SNMP API where the resource state is represented as an SNMP MIB, and SNMP 

protocol (GET/SET/WALK, and maybe TRAP) is used to access this information. 

 A CWMP TR-069 binding (called 'profile' in the CWMP world), that provides asynchronous 

access to the GAL exposed by CPE devices. Please note that since these devices are very 

simple, the GAL to be exposed is also very simplified. On the other hand, the extended 

synchronicity of the communication (e.g., delays of up to 24 hours) mandates that the API 

also exchanges the history of certain states and monitored variables. 

 A TMF814-compliant CORBA API to be used with resources that support that protocol. 

These alternative bindings are detailed in separate documents. 

4.1.4 The GAL REST XML Tree 

The principal tag of the XML tree is a GAL resource. Each resource is described by the tag 

<gal:resource> and it is identified by an ID, usually a variable-length dotted format. 

Within the gal:resource tag, the following children nodes supported: 

 <gal:provisionedState>:  the state provisioned for the resource. 

 <gal:committedState>:  the state committed for the resource. 

 <gal:powerStates>:  list of the supported power states of this device. 

 <gal:monitoring>:  a section of monitored parameters along with their momentary values. 

 <gal:url>:  this tag indicates that the details of a resource are available from 

another GAL server (see also Section Error! Reference source not 

ound.4.1.6) 

In addition GAL resources can contain further resources described as children: 

 <gal:physicalChildren>:  physical children. 

 <gal:logicalChildren>:  logical children. 



 

Page 16 of 49 

  FP7-ICT-258454    D5.5 

Please note that this XML tree is not a document, and it does not necessarily exist anywhere in its 

fullness, but it is rather a conceptual information base, which can be partially queried and 

manipulated by the commands described below. 

 

<gal:resource  gal_id=”0.0.1” description=”AbcAbc1.0”   type=”linecard” > 

 <gal:provisionedState state_id=”s0p0”/> 

 <gal:committedState state_id=”s0p1”/> 

 

 <gal:powerStates> 

  <gal:state state_id=”s0p0”  

    minimum_power_gain=”1.0”  

    maximum_packet_throughput=”10000” 

    maximum_bit_throughput=”12000000”/>   

  <gal:state state_id=”s0p1” ….  /> 

  <gal:state state_id=”s0p2” ….  /> 

  <gal:state state_id=”s1” ….  />   

 </gal:powerStates>  

 

 <gal:physicalChildren count=”n”> 

  <gal:resource gal_id=”0.0.1.1” description=”Port 1”   type=”port” > 

   … 

  </gal:resource> 

  <gal:resource gal_id=”0.0.1.1” description=”Port 2”   type=”port” > 

   … 

  </gal:resource> 

 </gal:physicalChildren> 

 

 <gal:logicalChildren  count=”n”> 

  <gal:resource gal_id=”0.0.1.A” description=”Xyz1.0.1”   type=”logical” > 

   … 

  </gal:resource> 

  <gal:resource gal_id=”0.0.1.B” description=”Xyz1.0.1”   type=”logical” > 

   … 

  </gal:resource> 

  ...  

 </gal:logicalChildren>  

 

 <gal:monitoring> 

  <gal:momentaryConsumption value=”212”/> 

  <gal:accumulatedConsumption value=”199” uptime=”38900”/> 

 </gal:monitoring> 

</gal:resource> 

 

  



 

Page 17 of 49 

  FP7-ICT-258454    D5.5 

4.1.5 GAL operations  

In the following all the GAL operations are specifically described. 

4.1.5.1 Discovery 

HTTP request format 

Basic format: 

 GET   http://<address>/GAL/0.0.1/ 

with an equivalent alternative syntax: 

 GET   http://<address>/GAL?id=0.0.1 

and extensible with parameters: 

 GET   http://<address>/GAL?id=0.0.1&propertySelector=children 

Query parameters 

id = an alternative way to specify a resource within the GAL. 

childDepth = an integer number indicating the depth of the tree returned, 0 the default 

returns only the entity addressed.  

porpertySelector = a string specifying the fields of the resource to be returned. Default is “all” 

which cover everything in the REST tree, except the <monitoring> 

sections. Values of this parameter can be any of the following:  

{provisionedState, committedState, powerStates, physicalChildren, 

logicalChildren}; and the following aggregate selectors can also be used 

{all, children, states}. Multiple propertySelectors can be specified, which 

effectively selects a union of the specified properties. 

 

Please note that the “monitoring” property section is not addressable by the propertySelector and 

it is neither included in the “all” aggregate. Consequently, the Monitoring operation (described 

below in 4.1.5.4 4.1.5.4) has to be used to access it. 

Children are enumerated by default values of parameters (childDepth = “0”, propertySelector = 

“all”), but further info on the children is not provided. 

HTTP status codes returned 

200 OK: resource found and returned. 

404 NOTFOUND: resource not found. 

301 MOVED PERMANENTLY: the server instructs the client to use a different URI (which 

is returned). This may happen if the GAL at one level 

redirects the client to another GAL entity, e.g. a network 

manager (NMS) GAL redirects a request to the GAL of a 

certain device. 

501 NOT IMPLEMENTED: this may indicate that certain query parameters are not 

supported by the GAL serving the request  

  



 

Page 18 of 49 

  FP7-ICT-258454    D5.5 

Document returned 

The returned document is a sub-tree of the full GAL tree shown in the previous Section. While 

the full tree is usually quite extensive, the returned document is normally “clipped” to a manageable 

size through the childDepth and propertySelector query parameters, e.g.: 

GET   http://<address>/GAL?id=A.00.0.1&propertySelector=states 

<gal:resource  gal_id=”A.00.0.1” description=”Card 0.1”   

type=”linecard”> 

 <gal:provisionedState state_id=”s0p0”/> 

 <gal:committedState state_id=”s0p1”/> 

</gal:resource> 
 

4.1.5.2 Provisioning 

HTTP request format  

PUT   http://<address>/GAL/0.0.1/provisionedState 

Query parameters: 

None. 

Document submitted 

A provisionedState section within the REST XML tree: 

 <gal:provisionedState state_id=”s0p2”/> 

HTTP status codes returned 

200 OK 

404 NOTFOUND: resource not found. 

501 NOT IMPLEMENTED 

 

4.1.5.3 Release 

HTTP request format  

DELETE   http://<address>/GAL/0.0.1/provisionedState 

Query parameters 

None. 

HTTP status codes returned 

200 OK 

404 NOTFOUND: resource not found. 

501 NOT IMPLEMENTED 



 

Page 19 of 49 

  FP7-ICT-258454    D5.5 

4.1.5.4 Monitoring 

This operation returns the monitoring sub-tree within the REST tree 

HTTP request format 

GET   http://<address>/GAL/0.0.1/monitoring 

Query parameters: 

None. 

HTTP status codes returned 

200 OK 

301 NOT_AVAILABLE 

404 NOTFOUND: resource not found. 

501 NOT IMPLEMENTED 

Document returned 

It is recommended that the REST server returns 3 metrics for monitoring, as shown in the 

example below: 

<gal:monitoring> 

 <gal:committedState value=”s0p0”/> 

 <gal:momentaryConsumption value=”212”/> 

 <gal:accumulatedConsumption value=”199” uptime=”38900”/> 

</gal:monitoring> 
 

4.1.5.5 Commit  

HTTP request format  

POST   http://<address>/GAL/0.0.1/committedState 

Query parameters: 

None. 

Document submitted 

<gal:commit/> 

HTTP status codes returned 

200 OK 

404 NOTFOUND: resource not found. 

501 ERROR: i.e.: nothing to commit. 



 

Page 20 of 49 

  FP7-ICT-258454    D5.5 

4.1.5.6 Rollback 

HTTP request format  

POST   http://<address>/GAL/0.0.1/committedState 

Query parameters: 

None 

Document submitted 

<gal:rollback/> 

HTTP status codes returned 

200 OK 

404 NOTFOUND: resource not found. 

 

4.1.6 Distributed GAL access with REST API - concept 

We expect that GAL is not necessarily a centralized information base, but it may also be 

distributed, in the sense that some information not available (are writeable) at a higher level, may be 

available at a different level. The most typical example is a network management system, which 

lists its managed devices, but it cannot tell details of those devices (see Figure 6). This information 

is accessible by accessing the GAL of the devices themselves only. 

 

Figure 6: Example of distributed GAL access: the NMS GAL only contains a reference to device level GALs. 



 

Page 21 of 49 

  FP7-ICT-258454    D5.5 

4.2 GAL bindings for Corba / TMF-814  (Section 2) 

4.2.1 Architectural overview 

The rationale behind the TMF-814 binding is that a significant part of telecommunication 

equipment EMS and NMS (Equipment Management Systems and Network Management Systems) 

use exclusively this standard protocol for offering information and control points to external 

software agents, i.e. to a Network wide vision. 

Consequently these systems appear as 'Umbrella Managers', with exclusive authority over the 

managed devices, and this also requires that the manager reconcile all messages and requests 

received from partner systems (higher level managers and monitoring systems, like the ECONET 

dashboard itself, for instance); this complex task primarily influenced the design of the TMF-814 

architecture extension to support Power Management. 

TMF-814 by itself is built upon CORBA, offering an object-oriented remote API, with extensive 

functions like naming service, transactions, discovery and notifications, etc. all of which come very 

useful when thinking about possible applications in the ECONET subject domain. As for Corba 

objects, native TMF-814 offers several factories, namely managedElementManager, 

equipmentManager, subnetworkManager, emsManager, protectionManager etc. which provide 

clean and consequent access to corresponding aspects of the managed device set. 

When it comes to  ECONET-focused protocol extensions, EMS manager is obviously the primary 

candidate, with the extension  of the lower level equipmentManager and subnetworkManager 

interfaces, i.e. the ones offering access to module and component-level GAL information. See 

Figure 7, which reports the extension mapping in the Ericsson device. 

 

Figure 7. Example of TMF mapping with Ericsson devices. 



 

Page 22 of 49 

  FP7-ICT-258454    D5.5 

4.2.2 SPO1400 energy aware 

4.2.2.1 EAObject class 

Energy Aware SPO1400 prototype has been provided of Energy Aware (EA) Object models, i.e. 

components of the network element whose energy status can be controlled. 

An Energy Aware Object has a aggregation range which goes from 1 to n where n represents the 

maximum number of ports (on an equipment basis) plus the Voltage, Clock and other type of 

objects (reset aux, reset board, reset port, reset traffic, etc.). For a complete list see below: 

 Voltage 

 Clock 

 Fan 

 Reset_Aux 

 Reset_Traffic 

 Reset_Board 

 Reset_Port 

 OptPort_1 

 OptPort_2 

 OptPort_3 

 OptPort_4 

 OptPort_5 

 OptPort_6 

 OptPort_7 

 OptPort_8 

 OptPort_9 

 OptPort_10 

4.2.2.2 EAContainer class 

An EAContainer object is a collection of EAObjects of different types. An EAContainer is 

aggregated to a Module.  

4.2.2.3 EAEquipmentProfileInfo  

The EAEquipmentProfileInfo class models the concept of Power Management Mode (PMM). An 

EAContainer is associated to an EAEquipmentProfileInfo. An EAEquipmentProfileInfo is a 

collection of action type assumed by the EAObjects included in the associated EAContainer. 

Depending on the EA_OBJECT_TYPE, the applicable action types are different. The whole set of 

action type is described below: 

 ON 

 OFF 

 REDUCED 

 INCREASED 

 NOT APPLICABLE 

Energy capabilities (profiles) are schematically defined in the Annex. 

An EAEquipmentProfileInfo is not extensible when the EAObjects action types assume a fixed 

value in the context of that profile. Its Extensible attribute is set to FALSE. 



 

Page 23 of 49 

  FP7-ICT-258454    D5.5 

An EAEquipmentProfileInfo is extensible when the action type associated to some EAObjects 

can be individually modified (by NMS/LCT). 

Only EAObjects of the following types can be modified when inserted in an extensible 

EAEquipmentProfileInfo. 

 OPTICAL_PORT 1 

 OPTICAL_PORT 2 

 … 

 OPTICAL_PORT 10 

 

4.2.3 NBI TMF814 Impacts 

North Bound Interface (NBI) TMF814 shall be enhanced to read from EA EMS and report to EA 

NMS energetic profiles and parameters with actual values. Here following we explain the TMF814 

impacts for supporting the SPO1400 energy aware features related to the ECONET project. The  

strategy is to provide TMF over EM (singleton approach). 

Two solutions have been identified: 

1) One based on additional information; 

2) Another one obtained by adding a new TMF manager that manages the EA networks. 

The way to retrieve information from EA EMS is the same in both solutions. 

The first solution, definitely suitable for Proof of Concept, is the one developed and implemented 

in the project, and described in the following. This solution should be applied only as a temporary 

solution for the Demo because the following: 

1) additionalInfo structure to support this kind of information is not the most effective one 

to model energy information as it results in complex strings to be parsed; 

2) in order to read the current energy status of the objects, 

EquipmentInventoryMgr_I.getEquipment method must send commands to the NE. 

This behaviour cannot be avoided in case this information is not needed. This 

introduces delays in this kind of operation. 

The second solution (under patent process) is deemed for a future industrially exploitable official 

release. 

4.2.3.1 Energy awareness in TMF 

We now describe changes in TMF814 NBI inserted to support the feature. 

The following proprietary additional info shall be added to the ManagedElement and Equipment 

objects, indicating if the ManagedElement or the Equipment is energy aware, based on the field 

"EnergyAwareSupporting" reported in PDM: 

  



 

Page 24 of 49 

  FP7-ICT-258454    D5.5 

 

Parameter Name 
Applicable MTNM Object 

Classes or Other Structures 

Legal 

values 

AVC 

notification 

raised? 

Potentially settable 

from 

Comment / 

Example 

“EnergyAware” Equipment, ME 
“True”, 

“False” 
no - - 

 

If the field "EnergyAwareSupporting" is not present in PDM, then no additionalInfo shall be 

added. In this case the meaning is that the NE and/or the card are not energy aware. 

4.2.3.2 Energy Aware Management 

In this solution we add proprietary TMF manager and specific methods and objects to manage EA 

resources (see Figure 8 for the basic structure). Also the way to report the information to the EA 

NMS is proprietary. As specifically tailored for TMF814, this simplistic approach cannot be 

extended to Multi-Technology Operations System Interface (MTOSI). Additional developments, for 

the second solution previously cited, are foreseen in order to create the MTOSI related structures 

and manager. 

 

Figure 8. Synthesis of the energyAware.EnergyAwareMgr_I structure. 

4.2.3.3 Energy capabilities realignment 

TMF shall be able to realign the energy capabilities (profiles) calling the PDM message 

“GetEnergyCapabilities”. 

After the realignment of the physical configuration, if the property 

“EnergyInformationManagement” in i36PlugIn.properties files is present and set to true, for those 

ManagedElements that have “EnergyAware” additionalInfo set to “True”, TMF application shall 

send the PDM message “GetEnergyCapabilities” and shall read the energy capabilities. 

Common.Common_I 

+setNativeEMSName() 

+setUserLabel() 

+setOwner() 

+getCapabilities() 

+setAdditionalInfo() 

energyAware.EnergyAwareMgr_I 

+getEnergyCapabilities() 

+getEnergyCapabilitiesByEquipments() 

+getEnergyCapability() 

+getEnergyProfilePointer() 

+getEnergyProfileAssociatedEquipments() 

+getCurrentEnergyStatus() 

+getCurrentEnergyStatusByEquipments 

+setEnergyProfilePointer() 

+modifyEnergyProfile() 



 

Page 25 of 49 

  FP7-ICT-258454    D5.5 

The way to report the information to the EA NMS is based on the additionalInfo structure and on 

the methods to set and get it: Common_I.setAdditionalInfo, ManagedElementMgr_I. 

getManagedElement,  EquipmentInventoryMgr_I.getEquipment, etc.. 

4.2.3.4 Realign Current Energy status 

At TMF start-up, after the realignment of the configuration, if the property 

“EnergyInformationManagement” in the i36PlugIn.properties file has the value true, the current 

energy status shall be retrieved calling the PDM method GetCurrentEnergyStatus described in 

Section 4.2.3.5. The method shall be called at NE level, for each NE that has the additionalInfo 

“EnergyAware” set to “True”. 

This message shall report information about the profile applied on each card, other than 

information related to the current energy status. Specific additionalInfo shall be added to the related 

Equipment. In case the profile is “extensible”, additionalInfo shall be added also to the related ports. 

As per the requirements, EA NMS shall ask for the current energy status per card. The VXX 

plug-in reports energy status for each component of the card; then, the NBI TMF shall process the 

information to report to EA NMS a view per card. 

4.2.3.5 Get Current Energy status 

EA NMS can retrieve the current energy status, by calling the TMF method 

EquipmentInventoryMgr_I.getEquipment on the equipment. 

This shall cause the call to PDM method GetCurrentEnergyStatus previously described, but in 

this case at the card (Module) level. This is subject to the property 

“EnergyInformationManagement” in i36PlugIn.properties: the PDM method shall be called if this 

property has value true. 

As for the realignment, TMF shall export current energy information to EA NMS per card. The 

current energy status shall be updated and stored for each card using the additionalInfo (see 

Section 4.2.3.4). 

4.2.3.6 Get Current Traffic Load 

The EM-VXX plug-in will report the attributes covering performance data to retrieve Actual 

Traffic Load through a specific request via PDM (GetCurrentStatus).  

Actual Traffic Load, i.e. CurrentDataRateRx/Tx of all EA Objects belonging to the card, can be 

retrieved by EA NMS by means of polling the relevant information (packets counter attributes, 

reported in CurrentDataRateTx/Rx information), correlated to a time window. TMF shall also make 

available the following data in the additionalInformation field:  

1) BWTotalReduction; 

2) MinBWThreshold; 

3) MaxBWThreshold. 

Correlating BWTotalReduction with CurrentDataRate information it is possible to retrieve the 

Actual Traffic LoadBWTotalReduction as the bandwidth reduction at the given PMM compared to 

maximum bandwidth, i.e. the Actual Max Traffic Load expressed in % of the maximum bandwidth 

of the given EA Container according to the applied PMM. 



 

Page 26 of 49 

  FP7-ICT-258454    D5.5 

For example, if the EAContainer is at maximum bandwidth, BWTotalReduction shall be 0%, if a 

PMM is applied to the EAContainer, BWTotal Reduction shall be x%. 

CurrentDataRate is the Actual Traffic Load of the given EA_Container, reported in bps. By 

means of this value, correlated with Actual Max Traffic Load expressed in bps of the given EA 

Container according to the applied PMM (the Actual Max Traffic Load in bps can be retrieved by 

the BWTotalReduction % and by the maximum bandwidth in bps of the given EA_Container), the 

EA NMS shall understand the level of utilization of the given EA Container according to the 

applied PMM. 

By calling the TMF methods EnergyAwareMgr_I.getCurrentEnergyStatus() and 

EnergyAwareMgr_I.getCurrentEnergyStatusByEquipments(), which will report, among other 

information, the CurrentDataRate of the related EAContainer, this information can be retrieved. 

MinBWThreshold, MaxBWThreshold shall report the information related to the minimum 

bandwidth under which the component is under-utilized and the maximum bandwidth over which 

the component is near to be over-utilized, respectively . 

Notifications shall be sent when the actual traffic load is higher/lower than the configured 

threshold values. 

4.2.3.7 Set Power Management Mode 

It shall be possible for the EA NMS to change the energy profiles on the cards and, for those 

profiles that are extensible, to change the status of some objects.  

The way to change and modify energy profiles is by using the Common_I.setAdditionalInfo 

method, calling it on the Equipment. 

1) Call PDM “ProfileName” field. It is the profile that shall be applied; it shall be set with 

the value of “EnergyProfileName” additionalInfo passed in the setAdditionalInfo 

method 

2) The PDM “ProfileId” field shall be set with the progressive number of the 

“EnergyProfile_<n>” additionalInfo that corresponds to that “ProfileName”. This has 

to be retrieved from “EnergyProfile_<n> additionalInfo stored on the ManagedElement 

3) Optional PDM field “EAObject” shall be set based on the “name” of “OptPort_x” 

additionalInfo of the Equipment 

4) Optional PDM field “PortAction” of the message shall be set based on the new “value” 

of “OptPort_x” present in setAdditionalInfo message. All the possible values are listed 

here; the only values to be used by EA NMS are “ON” and “OFF”. 

If the response is ok, then the “EnergyProfileName”, all the “OptPort_x” and other EA Objects 

additionalInfo shall be updated accordingly, otherwise the value shall be unchanged.  Setting of 

“EnergyProfileName” and “OptPort_x” additionalInfo through a single setAdditionalInfo() call, 

shall cause the creation of a single PDM message. This will be the preferred way to set PMM. 

 



 

Page 27 of 49 

  FP7-ICT-258454    D5.5 

4.3 GAL bindings for TR-069 

4.3.1 Introduction 

The section describes a proposed mechanism for controlling and monitoring the energy behaviour 

of CPE devices, in a massive, “carrier-grade” scale and robustness. The mechanism is built upon the 

Broadband Forum TR-069/CWMP specification, which is the preferred way for simultaneous 

remote configuration and monitoring of a large number of customer devices.  

Another design goal was the alignment of this communication framework with the principles and 

concept of the Green Abstraction Layer described in the document D4.2 of the ECONET 

consortium. Specifically, the proposed mechanism addresses the following capabilities: 

 Hierarchical decomposition of the device along the “tree” of power aware and/or 

individually identifiable power consumer components (noting that for typical CPE 

equipment the 'hierarchy' is typically small and shallow). 

 Capability for controlling power modes administratively (e.g. by a higher level manager), or 

letting the device control power modes autonomously. 

 Accessing a history of power modes and metered values through an intermittent and 

relatively infrequently available communication link. 

4.3.2 Considerations 

Configuring and monitoring of the actual values in CPE devices is a pretty straightforward and 

proven technique in TR-069, e.g. it is in mainstream use by operators for configuring customer-

specific home gateway settings like VoIP numbers, firewall rules, etc.. The corresponding relevant 

Recommendation also suggests the use of TR-069 for historical type of status information (i.e. 

performance monitoring), but the way to do this is not detailed, and consequently such mechanisms 

are not provided by typical TR-069 devices and auto-configuration servers. 

The problem here is that we want to collect information (power modes and metered values) 

characterized by the following properties: 

 The data is often constant or changes very slowly and in a relatively narrow range. 

 Power mode changes, however, result in sharp changes, and a sequence of such changes 

may occur in a short period.  

 The information is used primarily for large-scale analysis of CPE power control mechanisms 

and the resulting behaviour; thus, a constant and/or frequent data link between the manager 

and the CPE devices is not justified. Rather, it is preferred to stick with the typical CPE 

WAN Management Protocol (CWMP) provisioning cycle times like 2 to 24 hours. 

4.3.3 Solution architecture 

The proposed power control and monitoring scheme is illustrated by Figure 9 below. The main 

design goal here was clearly to leverage server components, which are often available as part of the 

Operational Support System (OSS) stacks of operators. Thus the server side consists of: 

 A TR-069 Autoconfiguration Server (ACS), with „northbound” interfaces and capabilities of 

accepting commands for “discovery”, “assignment” and “query” on CPE devices.   



 

Page 28 of 49 

  FP7-ICT-258454    D5.5 

 A performance monitoring server prepared to collect information through the ACS interface, 

and to store, analyse and display this data in human readable format and also as data to be 

processed by other applications. 

 A Network Policy Controller which implements the power control mechanisms either as a 

separate “power policy controller” or as part of a more general central inventory and 

provisioning system for CPE devices, communication links and other features. 

On the Customer Premises side, the figure not only displays the customer home-gateways, but 

also additional CPE devices (TVs, phones, computers and also other electrical devices), which are 

possibly controlled through the gateway. While the “home network” is out of scope for the 

ECONET project and consequently this is not described in detail, extending the “green control 

plane” to home devices offers huge potential power savings, and is a viable option, well worth to be 

explored. 

 

Figure 9. Power control and monitoring scheme  

 

4.3.4 Description of the Power Data Model 

A key interface of the architecture is the one between the ACS and the managed devices. This 

interface is used over the TR-069 protocol, i.e. it is a TR-069 data model (see Annex I). 

The model defines methods for controlling the power economy behaviour of devices, and also for 

monitoring their power modes and power usage. The model allows for implementing these features 

in several compliance levels, i.e. profiles:  



 

Page 29 of 49 

  FP7-ICT-258454    D5.5 

 The Baseline profile requires the support for putting the device into one of several power 

states, and also for reading the momentary value of electric power and accumulated energy 

usage. These values may either be calculated or measured.  

 The Component profile provides capabilities for the inspection and control of power 

behaviour of some parts of the device.  

 The History profile extends this by the capability of getting historical data for power modes 

and usage. This profile makes it possible to implement CPE power monitoring in large, 

provider-wide scale CWMP-ACS systems, where the frequency of data exchange with the 

individual CPE-s is rather low, (i.e. several hours or days). 

4.3.5 Collection of History items 

The semantics of the History is described below in more detail. The goal here is to provide a 

mechanism to accommodate the acquisition of both long-term slow-changing and abrupt, fast 

changing information (as described in the Section 4.3.2 above).  

The mechanism is a hybrid of periodic and event based data collection as showed in Figure 10 

below. There is a periodic, low frequency data collection with additional collection points inserted 

when the change of some parameters exceeds certain thresholds. Considering the power domain 

there are two types of thresholds suggested: 

 Any change of the actual power state of a device or a component within (i.e. a change of 
PowerState  or PerformanceMode below) 

 A threshold of 10-20% is recommended for changes on the usage values, i.e. on the 
MomentaryWattage values below. 

The figure below illustrates the collection periods resulting in a scenario that includes examples 

for both threshold crossings. 

 

Figure 10. Semi-periodic history data collection. 



 

Page 30 of 49 

  FP7-ICT-258454    D5.5 

5 Green extension of OPENFLOW 

5.1 Introduction 

The evolution of network and networked device architectures are two of the most important 

aspects of the Internet as we know it today, since they directly reflect the main open issues and the 

needs of current and upcoming network technologies and services.  

The first aspect that is driving the evolution of the Future Internet is certainly the global increase 

of network traffic: in Error! Reference source not found., Cisco estimated that global IP traffic 

as increased eightfold over the past 5 years, and will increase fourfold over the next 5 years. 

Moreover, Internet video was estimated to account for over 50% of consumer Internet traffic by 

2012. Since video traffic has strict Quality of Service (QoS) requirements, the service level must be 

sufficient to support such services.  

The estimated increase of IP traffic has also drawn attention to the power consumed by the ICT. 

The Global e-Sustainability Initiative (GeSI) Error! Reference source not found. estimated an 

verall network energy requirement of about 21.4 TWh in 2010 for European Telcos, with a figure of 

35.8 TWh in 2020 if no Green Network Technologies (GNTs) will be adopted. Considering that 

energy costs are raising quickly all over the world, the IP traffic increase trend would soon be 

unbearable if current network architectures and technologies were maintained. 

Hence, re-thinking and re-designing the Internet becomes inevitable to keep the pace of any 

technological improvements. For this reason, many current and upcoming research efforts are 

emphasizing the weaknesses of the Internet infrastructure identifying the main issues and proposing 

novel solutions to guarantee a viable evolution of the Future Internet.  

The most common criticisms regard the lack of flexibility of the currently deployed solutions: in 

fact, network infrastructures have not changed much throughout the years, being still based on the 

TCP/IP paradigm, and hence not providing an efficient degree of integration between network 

architectures and services. As a result, this architectural ossification has in many cases delayed the 

introduction of new technologies. In order to support novel solutions for the Future Internet 

development, programmability will play a key role. Moreover, although energy efficiency aspects 

are gaining more and more interest among both researchers and manufacturers, their actual 

introduction inside networks and network devices is still far from becoming a custom. Energy 

efficiency does not represent the mere reduction of CO2 emissions, but the achievement of a 

satisfying trade-off between power consumption and network performance. Unfortunately, it is very 

difficult to save energy without affecting the correct execution of network services.  

In order to address the increasing need for flexibility of the Future Internet, Software Defined 

Networking (SDN) has recently emerged as a ground-breaking technology for realizing flexible 

network nodes able to customize their behaviour according to the network and service needs. 

Although it represents a recent solution, SDN is rapidly evolving and gaining attention from both 

researchers and manufacturers. As stated in Error! Reference source not found., SDN will be a 

3.52 billion global market by 2018 thanks to the growth of cloud services and the need for mobility.  

Among all existing realizations of the SDN paradigm, OpenFlow (OF) Error! Reference source 

ot found. is probably the most popular one, reaching a point where it is often considered a synonym 

for SDN. Originally conceived to allow the testing of new protocols inside campus networks 

through the separation of the traffic flows, OF is characterized by the separation of the data- and 

control-plane. In detail, the data-plane still resides in the network node (called OF switch) and 

performs flow-based traffic processing: packets are matched against the entries of a flow table and 



 

Page 31 of 49 

  FP7-ICT-258454    D5.5 

are then forwarded or manipulated (modify L3/L4 header fields, push/pop a VLAN tag, …) 

according to the corresponding flow table entry. The central Controller is in charge of making 

decisions on unmatched packets and in general performing control-plane operations. An example of 

an OF network can be seen in Figure 11. 

 

Figure 11. OpenFlow most frequent deployment. 

Hence, the Controller plays a very important role in an OF network. It guarantees communication 

among hosts using a standard language called OF protocol, which implements a set of primitives to 

manage the flow table of each node in the network and to obtain a complete knowledge of the node 

itself. The centralized architecture typical of OF represents a valid solution for guaranteeing the 

correct interaction of all network elements. Another strength is represented by the standard 

communication system provided by the OF protocol and the way it collects and distributes 

information about the traffic demands and the nodes status. 

For these reasons, we think that this architecture, which presents a hierarchical structure and a 

standard communication channel, would be the perfect support for introducing energy-aware 

network control policies. Such “green” enhancements would allow the allocation of traffic flows 

and the managing of the internal states of the single nodes at the same time: with this strategy, 

network consumption would be minimized and the correct bandwidth allocation for each service 

would be guaranteed. 

To the best of our knowledge, there is no technique which makes the controller aware of the 

power consumption of the internal hardware components of the switches: we candidate the Green 

Abstraction Layer (GAL), defined in WP4 (see [1-6]), to this purpose. The GAL represents an 

internal communication interface/middleware to exchange power management data among packet 

processing elements, and apply control strategies in a simplified way. In this respect, the purpose 

here is to integrate the GAL primitives inside the OF protocol to manage the network power 

configuration along with the traffic flows: the expected result is the dynamic and optimal 

configuration of the path between a source and a destination from the energy point of view. In order 

to show a quantitative evaluation of the gain achieved with this integration, we propose in the 

following an algorithm to solve the in-network consolidation problem.  



 

Page 32 of 49 

  FP7-ICT-258454    D5.5 

5.2 Network Processor Architecture 

Next-generation network processors need to move forward from the typical proprietary 

architectures to being more flexible and support the capabilities needed for developing a Future 

Internet network. As mentioned in the Introduction, such processors must be easily programmable 

and customizable, which is usually obtained through the adoption of a central intelligence and a 

number of function-specific HW components with some level of “energy-awareness”. 

Today, one of the most popular trends consists in using multi-core architectures for network 

processors. The main reason is that multi-cores allow increasing network performance without 

using too high clock frequencies, which typically cause heat dissipation and data synchronization 

issues. In this respect, most solutions are derived from PC-based SW routers or Systems on a Chip 

(SoC) platforms. The former have represented a diffused trend in the research for a long time. Their 

advantages are ease of programmability (especially in presence of the Linux Operating System) and 

low costs. In addition, PC platforms already embed power management capabilities, usually 

controlled through the ACPI standard. The main criticism that has been moved to SRs in the past 

concerns their performance level, which has not been comparable to commercial routers for a long 

time. However, the introduction of specific HW able to improve the system efficiency, such as 

NICs that can guarantee some packet pre-processing, has boosted their potentials. SOC platforms 

represent a better performing and, of course, more expensive solution for the design of 

programmable network processors. They are characterized by a number of dedicated HW 

components to perform various kinds of operations outside the central cores, and also include 

various forms of power management capabilities.  

Network processors, either PC- or SoC-based, present very similar architectures when it comes to 

the packet elaboration. Even proprietary architectures work in the same way, but of course they do 

not provide so many freedom degrees as programmable/configurable devices. A simple example of 

this architecture can be seen in Figure 12. 

 

Figure 12. Network processor architecture. 

Packets are received by one or more NICs, which might provide some pre-processing operations, 

like packet classification and table, or such operations might be performed inside the system but in 

a similar manner. 

In detail, packet classification is usually performed by a HW parser, which extracts pre-selected 

header fields from the incoming packets and matches the so composed key against the entries of a 



 

Page 33 of 49 

  FP7-ICT-258454    D5.5 

flow table. The efficiency of this building block is crucial to guarantee high-performing packet 

processing. For this reason, the memories used for these tables have become more and more 

complex to provide fast matching capabilities.  

RAM memories, which represent the most diffused support for flow tables, are known to take a 

memory location as input and return the value contained at that address. In contrast, Content 

Addressable Memories (CAM) work exactly in the opposite way, as they perform an exact match of 

data and return the address at which they are contained. This characteristic makes CAM a very 

interesting technology for building flow tables. However, since only exact matches can be 

performed on a CAM, it is really suitable only for flow matching, but not for prefix matching. A 

possible solution could be that of “expanding” each prefix into all possible flows but that would 

quickly exhaust the memory space. 

A more flexible type of CAM is represented by Ternary CAM (TCAM). Ternary means that, in 

addition to the binary “0” and “1” digits, there is also an “X” symbol representing a wildcard 

choice. The inclusion of wildcards allows non-exact matching, hence the possibility of prefix 

matching. The main drawback of TCAMs is represented by their high power consumptions: in fact, 

this parallel structure takes a lot of energy to power the match line, while wasting most of the 

energy on non-matches. The possibility of decomposing a single TCAM into logical sub-tables 

would allow independently managing their power configurations, for example by turning off the 

power supplied to the empty memory portions.  

In Linux-based platforms, forwarding is usually performed at kernel level. Although this strategy 

allows covering all functionalities needed in a forwarding engine, and the parallelization of the 

forwarding process among cores allows strongly improving performance, some recent solutions 

based on moving forwarding from kernel level to user-space level have provided massive 

performance improvements, at the price of a reduced number of network functionalities. Since the 

framework runs in user-space, the high overhead associated with kernel operations and with 

copying data between kernel and user space is removed. Moreover, significant time is also saved 

with further improvements, like disabling interrupts generated by packet I/O. In this respect, one of 

the most promising solutions is represented by the Intel Data Plane Development Kit (DPDK). 

At the Tx side, simpler systems do not perform any further operations. If supported, a scheduling 

discipline allows processing traffic flows respecting their priority level, which means a higher 

bandwidth percentage is assigned to traffic with stricter QoS requirements. 

The architecture of a network processor, with the “cohabitation” of separated Rx and Tx 

processing chains, maps perfectly with the OF protocol operations. Moreover, the logical distinction 

between data- and control-plane typical of such devices clearly corresponds to the centralized 

structure of OF. Finally, the way such centralization can be exploited for a more hierarchical 

purpose will be clarified in the next section. 

5.3 The OpenFlow Protocol Extension towards Green Capabilities 

OpenFlow specifies an interface, called OF Channel, used to connect each switch to a controller. 

The implementation of the channel can be vendor specific as long as the messages are compliant 

with the OF Protocol. Such messages can travel from the Controller to the network node, when 

information is required, or vice versa. In this respect, our aim would be to exploit the OF Channel 

characteristics to integrate its set of messages with some primitives concerning the power state of 

the network devices inside the network, like available power configurations and relative behaviour 

(e.g., power consumed by the device in that particular state), or current power state. As mentioned 



 

Page 34 of 49 

  FP7-ICT-258454    D5.5 

in the Introduction, these communication primitives are already specified by the Green Abstraction 

Layer. 

The GAL allows exchanging power management data and applying control strategies in a 

simplified way. Its application is driven by two main capabilities. On one hand, it hides the 

implementation details of energy-saving approaches. On the other hand, it offers a standard 

interface to guarantee interactions between heterogeneous green capabilities and HW technologies, 

as well as between control and monitoring frameworks. The power management settings are driven 

by the Local Control Policies (LCPs), control processes developed to optimize the router 

configuration in order to achieve the desired trade-off level between energy consumption and 

network performance according to the incoming traffic load. The GAL has a hierarchical structure, 

where multiple instances are used for managing the exchange of information between the LCPs of 

different levels and between LCPs and hardware components.  

By means of the GAL, control applications are allowed to get information on how many power 

management settings are available at the data-plane, and on the potential effect of using such 

settings. The other way around, control applications are capable of setting a certain power 

management configuration to the device data-plane. It is worth noting that, in order to provide the 

information needed by control applications to reduce the energy consumption while meeting QoS 

constraints, the GAL must explicitly represent the impact on network performance when different 

power management settings are applied.  

An OF switch can be represented, from a network point of view, by a set of ports (Physical, 

Logical and Reserved), a set of actions that can be performed on traffic flows (the list of actions of a 

switch depends on the specific hardware) and one or more flow tables. An OpenFlow version of the 

GAL can consider as logical entities the ports, the actions and the tables of all the OF switches. 

Since there is no constraint about how those resources have to be implemented inside the device, 

manufacturers can use their own technologies and solutions and thanks to the GAL each resource 

can be defined in terms of power consumption with respect to the offered load. In this way, all the 

entities of the network can be completely described, from the energy perspective, by a set of EAS. 

The extension of the OpenFlow protocol to make the network efficient using the GAL requires 

both the definition of new OpenFlow messages and the design of a new module inside the latter.  

As far as the new message definition is concerned, the network nodes have to send the description 

of their own logical resources and related EAS to the controller. In this direction, we have defined a 

set of new messages to implement the main GAL primitives: discovery, provisioning and 

monitoring.  

The discovery primitive allows the Controller to get information about the power consumption of 

each entity. The related packet from the network node to the Controller contains the complete 

description of the EAS: an identifier, the power gain with respect to the maximum power 

consumption and the throughput in terms of packets per second and bits per second. In order to 

completely support the GAL, the message also contains wake-up time, sleep time and transition 

power. 

The provisioning primitive allows the Controller to set the state of a network node. The related 

packet from the Controller to the network node contains the logical resource identifier and the EAS 

identifier. 

The monitor state and monitor consumption primitives allow the Controller to get information 

respectively about the current EAS set on a logical entity and the current power consumption of the 

entity. The related packets from the switch to the Controller contain the identifier of the entity and, 



 

Page 35 of 49 

  FP7-ICT-258454    D5.5 

in the first case, the identifier of the current state, in the second case the power consumption of the 

entity. 

In addition, we propose a new Controller module called Energy Optimizer: it is a possible 

demonstration of how the controller can exploit the information provided by the GAL to reduce the 

power consumption of the network. In fact, the Controller gathers information about the EASs, and 

the Energy Optimizer module calculates a nearly optimal configuration to process a given traffic 

demand consuming the minimum energy. 

 

5.4 In-Network Consolidation 

In the previous sections the advantages that can be obtained through the introduction of power 

management capabilities inside the OF protocol, in terms of energy efficiency and resources 

management, have already been roughly sketched. Now we want to move a step further and provide 

an example to clarify how our study would help overcoming scalability issues and promote energy 

efficiency at the same time. To do this, we can start by describing the network management as a 

consolidation problem. 

The term consolidation describes the optimal allocation of functionalities/resources to guarantee a 

certain outcome. The concept of consolidation usually refers to the Virtual Machines (VMs) 

allocation in a variable number of physical servers inside a datacenter. Since we aim at extending 

the same concept to the optimal allocation of network resources, in the following the tackled 

problem will be called in-network consolidation. 

 

5.5 The In-Network Consolidation Algorithm 

This section presents an algorithm to calculate the solution of the "in-network consolidation" 

problem. We consider a network, as represented in Figure , composed by R routers connected by L 

links. Each router, aside from forwarding, can also perform A possible off-loading operations on 

traffic, or can be turned off when it is not required, like the bottom left one in the figure. 

 

 

Figure 13. Representation of a network with sleeping capabilities. 



 

Page 36 of 49 

  FP7-ICT-258454    D5.5 

The traffic demand is represented by a set of F flows, with the generic f flow defined by: 

 a source sf  and a destination df 

 a load Lf 

 a subset of of the available A actions required by the flow. 

Here, we formally define a problem, which takes as input the topology, the logical resource and 

the traffic demands, and finds the flows and actions configuration that satisfies the traffic demand 

and minimizes the power consumption of the entire network. Table.1 contains the description of the 

variables and parameters that are used for the problem formulation.  

Table 1. Notation definition. 

ulf binary variable that equals 1 if the link l is crossed by the flow f 

vrfa binary variable that equals 1 if the router r crossed by the flow f implement the action a 

xl binary variable that equals 1 if the link l is active 

yra binary variable that equals 1 if router r enables the action a 

zr binary variable that equals 1 if the router r is active 

R total number of available routers 

L total number of available links 

A total number of available actions 

F total number of flows 

Tr activation cost of the router r 

Ul activation cost of the link l 

Vra activation cost of the action a on the router r 

Lf load of the flow f 

Ml capacity of the link l 

wf binary constant that equals 1 if the flow f requires the action a 

hrl matrix of binary constants that equal 1 if the link l enters the router r 

krl matrix of binary constants that equal 1 if the link l exits the router r 

 

min
𝑢,𝑣,𝑥,𝑦,𝑧

∑ ∑ ∑ 𝑇𝑟 +𝐴
𝑎=1

𝐿
𝑙=1 𝑈𝑙𝑥𝑙 + 𝑉𝑟𝑎𝑦𝑟𝑎

𝑅
𝑟=1   (1) 

𝑦𝑟𝑎 ≥
1

𝐹
∑ 𝑣𝑟𝑓𝑎

𝐹
𝑓=1      (2) 

∑ 𝑣𝑟𝑓𝑎
𝑅
𝑟=1 = 𝑤𝑓𝑎     (3) 

∑ 𝐿𝑓𝑢𝑙𝑓
𝐹
𝑓=1 ≤ 𝑀𝑙     (4) 

∑ ℎ𝑙𝑟𝑢𝑙𝑓
𝐿
𝑙=1 − ∑ 𝑘𝑙𝑟𝑢𝑙𝑓

𝐿
𝑙=1 = 0, 𝑟 ≠ 𝑠𝑓 , 𝑑𝑓  (5) 

∑ ℎ𝑙𝑟𝑢𝑙𝑓
𝐿
𝑙=1 − ∑ 𝑘𝑙𝑟𝑢𝑙𝑓

𝐿
𝑙=1 = 1, 𝑟 =  𝑠𝑓  (6) 

∑ ℎ𝑙𝑟𝑢𝑙𝑓
𝐿
𝑙=1 − ∑ 𝑘𝑙𝑟𝑢𝑙𝑓

𝐿
𝑙=1 = −1, 𝑟 =  𝑑𝑓  (7) 

𝑥𝑙 ≤ 𝑧𝑟      (8) 



 

Page 37 of 49 

  FP7-ICT-258454    D5.5 

𝑣𝑟𝑓𝑎 ≤ ∑ (ℎ𝑙𝑟 + 𝑘𝑙𝑟) 𝑢𝑙𝑓
𝐿
𝑙=1     (9) 

𝑥𝑙 ≥
1

𝐹
∑ 𝑢𝑙𝑓

𝐹
𝑓=1      (10) 

𝑢𝑙𝑓, 𝑣𝑟𝑓𝑎, 𝑥𝑙 , 𝑦𝑟𝑎, 𝑧𝑟 ∈  [0,1]    (11) 

 

Equation 1 is the cost of the whole network and is composed by three components, representing 

the presence of each active router, port and action. Equation 2 states that the action a has been 

enabled on the router r for all the flows requiring it, while Equation 3 guarantees that, for a given 

flow f, each one of its actions are performed only ones, and Equation 4 that the capacity of each link 

is respected. Equations 5 - 7 represent the flow conservation constraints. Equations 8-10 determine 

the number of routers and links that are used for forwarding. Finally, Equation 11 constraints the 

values that can be assumed by the problem variables. 

5.6 Test Results 

The problem presented in the previous section has been applied to the simple topology shown in 

Figure . This simple network is composed of five routers connected by twelve mono-directional 

links. Four actions are made available on the network and can be activated according to the 

demands. In this first case, the activation cost is 5 for each link and for each action, and equals to 20 

for each router. The capacity of each link corresponds to 1. 

 

Figure 14. Topology of the network used for testing the optimization problem. 

The traffic demand that has been chosen for this example consists of three flows, which have the 

characteristics reported in Table 2. 

  



 

Page 38 of 49 

  FP7-ICT-258454    D5.5 

 

Table 2. Traffic Flows 

Flow Load Source Dest Actions 

f1 0.1 1 5 1, 3, 4 

f2 0.1 2 3 2, 3 

f3 0.1 1 3 2, 3, 4 

 

Figure  shows the flows and actions allocation obtained through the algorithm presented in the 

previous section. The optimization strategy allows managing all flows using only 3 of the available 

12 links, and also switching off Router 4. Moreover, each action is enabled only once on the 

network and serves all flows requiring it. As a result, the total cost of the network is around 56% 

lower in the optimized configuration. 

 

 

Figure 15. Optimized flows and actions allocation. 

 

In the next example, presented in Figure , we suppose to increase the load of f3 from 0.1 to 1. 

This new parameter brings to a stress situation in the network configuration: in fact, the load of f3 

now corresponds to the link capacity, hence no other flow can be transmitted along with f3. For this 

reason, the flows allocation requires the activation of the sleeping router and of two more links, 

which brings to a cost increase but still guarantees the service availability for all flows. 

 



 

Page 39 of 49 

  FP7-ICT-258454    D5.5 

 

Figure 16. Flows and actions allocation in presence of an increased flow load. 

 

Figure  represents a situation in which the activation of Action 1 on Router 3 has a higher cost. In 

this case, it is possible to activate this action on another router (Router 5) and maintain the network 

cost constant. 

 

 

Figure 17. Flows and actions allocation in presence of an increased action cost. 

 

Finally, in the example depicted in Figure , f2 has been removed from the traffic demand. This 

allows switching off a link and another router to increase the overall energy saving. 



 

Page 40 of 49 

  FP7-ICT-258454    D5.5 

 

Figure 18. Flows and actions allocation according to a new traffic demand. 

6 Network Connectivity Proxy  

6.1 Overview 

The Network Connectivity Proxy (NCP) maintains the virtual presence for high power devices 

during their idle periods and wakes them up only when their resources are required [18] The NCP 

functionality is requested by any low power managed device that wants to reduce its idle energy 

waste and conveys its virtual presence to another entity (running the NCP) in the local 

network [19], [20], [21]. The NCP is the combination of the UPnP device as well as control point. 

As control point, it discovers the low power managed devices (e.g., PCs) in the network and 

controls them. As UPnP device, it offers the NCP service, advertises its presence in the network and 

respond to the actions from low power managed devices control point. The basic functionalities of 

the NCP include: 

 Receives discovery messages from the power aware devices and stays up-to-date about their 

operational power status. 

 Sends discovery messages to announce its NCP service to the low power managed devices 

in the local network. 

 Sends action requests to the low power managed devices to control their operational status. 

 Receives action requests from the low power managed devices to register different type of 

proxying requests and wake-up conditions. 

 Receives state variable updates from low power managed device and enables/disables the 

registered actions/rules.  

 Sends the Wake-On-LAN (WOL) packet to the sleeping devices when certain wake-up 

conditions are met. 

Apart maintaining network presence, the NCP could also manage the power state of devices, so to 

put them to sleep when no traffic is present and to wake them up when their processing is 



 

Page 41 of 49 

  FP7-ICT-258454    D5.5 

required [22]. Thus, the low power managed device is also the combination of the UPnP device as 

well as control point. As control point, it discovers the NCP presence in the network and requests 

different actions from it. As UPnP device, it offers the LowPower (LP) service [23], [24], advertises 

its presence in the network and respond to the actions from the NCP control point. Thus, both the 

NCP and low power managed device play the role of UPnP device as well as control point as 

depicted in Fig. 18. This design enables the NCP to control the operational status of the low power 

managed devices. 

 

 

Figure 19. UPnP model integrating NCP and LP services. 

 

6.2 NCP Service 

6.2.1 Description 

The NCP service is supposed to be running on the residential home gateway. Following the 

specifications of UPnP Device Architecture v1.0 [17], the basic NCP device and service description 

is shown below. NetworkConnectionProxy1.xml defines all the actions supported by the 

NetworkConnectionProxy service (or simply NCP service) and the state variables/action 

parameters. State variables represent the current state of the UPnP device. The state variables also 

act as arguments to action definitions. Although the NCP service state variables are only intended to 

be used as parameters for the actions provided by the NCP service. Thus, such state variables do not 

really represent the NCP device state and cannot trigger any events. UPnP uses string data type. 

Actions are send/received in XML format that contain action arguments/parameters as strings. 

Thus, action arguments have some restrictions and should be converted to string format to represent 

well formatted XML fragment. 



 

Page 42 of 49 

  FP7-ICT-258454    D5.5 

6.2.2 Supported Actions 

The NCP service provides a list of actions to the low power managed devices. Any action 

registration by the NCP service requires host identification and power state information. The host 

identification is based on the UUID, which is unique to each UPnP device and is supplied by the 

power managed device during action registration. The power state defines when to activate/execute 

a particular registered action. Since NCP maintains the presence on behalf of sleeping devices, it 

responds to ARP packets as soon as the power managed device enters into low power state. The 

ARP rule is automatically activated for sleeping devices and don’t require any registration through 

UPnP interface. The power managed device can request the following actions from the NCP 

service. 

6.2.2.1 PingRequest Action 

The low power managed devices can request the PingRequest action from the NCP service. This 

action enables the NCP to answer ICMP PING packets on-behalf of power managed devices when 

they enter into sleep mode.  

6.2.2.2 DhcpRequest Action 

The low power managed devices can request the DhcpRequest action from the NCP service. This 

action enables the NCP to periodically renew the IP address of low power managed device with the 

DHCP server during its sleep period.  

  

NCP Device Description 
<?xml version="1.0" ?>  
    root xmlns="urn:schemas-upnp-org:device-1-0" configId="1"> 

             <specVersion> 

                    <major>1</major> 

                    <minor>0</minor>  

             </specVersion> 

             <device> 

                    <deviceType>urn:schemas-upnp-org:device:NetworkConnectionProxy:1</deviceType> 

                    <friendlyName>Jetway Atom Home Gateway</friendlyName>  

                    <manufacturer>Jetway</manufacturer>  

                    <manufacturerURL>http://www.jetway.com.tw/</manufacturerURL>  

                    <modelDescription>Jetway Mini ITX with Atom N550</modelDescription>  

                    <modelName>Jetway JNC9C-550-LF</modelName>  

                    <modelNumber>1.0</modelNumber>  

                    <UDN>uuid:03882606-6412-4e01-bfa0-c3755b091a5e</UDN>  

                    <serviceList> 

                        <service> 

                           <serviceType>urn:schemas-upnp-org:service:NetworkConnectionProxy:1</serviceType> 

                           <serviceId>urn:upnp-org:serviceId:NetworkConnectionProxy:1</serviceId>  

                           <SCPDURL>/NetworkConnectionProxy1.xml</SCPDURL> 

                           <controlURL>/control</controlURL> 

                           <eventSubURL>/eventing</eventSubURL>  

            </service> 

                </serviceList> 

         </device> 

    </root> 

http://www.jetway.com.tw/%3c/manufacturerURL


 

Page 43 of 49 

  FP7-ICT-258454    D5.5 

6.2.2.3 WakeOnConnection Action 

The low power managed devices can request the WakeOnConnection action from the NCP 

service.  This action enables the NCP to wake-up the low power managed device whenever a new 

connection/packet arrives at specific transport protocol and port.  

6.2.2.4 WakeOnPacket Action 

The low power managed devices can request the WakeOnPacket action from the NCP service.  

This action enables the NCP to wake-up the low power managed device whenever a packet 

matching the supplied pattern is seen. The pattern is supplied by the low power managed device and 

consists of the data to be looked within the packet with a given offset from the end.  

6.2.2.5 SendReplyOnPacket Action 

The low power managed devices can request the SendReplyOnPacket action from the NCP 

service.  This action enables the NCP to send a given reply packet on behalf of sleeping low power 

managed device whenever a packet matching the supplied pattern is seen. The pattern is supplied by 

the low power managed device and consists of the data to be looked within the packet with a given 

offset from the end.  

6.2.2.6 TcpKeepAlive Action 

The low power managed devices can request the TCPKeepAlive action from the NCP service.  

This action enables the NCP to maintain a given TCP session active on behalf of sleeping low 

power managed device.  

6.2.2.7 HeartBeating Action 

The low power managed devices can request the HeartBeating action from the NCP service.  This 

action enables the NCP to send periodic heart-beat messages for the applications used by the power 

managed devices before sleeping. The application needs to provide all arguments for the 

HeartBeating action template implemented by the NCP service.  

6.2.2.8 TCPMigrationFreeze Action 

The low power managed devices can request the TCPMigrationFreeze action from the NCP 

service.  This action freezes the active TCP session at low power managed device and migrates and 

restores the TCP session at the NCP. The application needs to provide all arguments required for 

the TCPMigrationFreeze action.  

6.2.2.9 TCPMigrationResume Action 

The low power managed devices can request the TCPMigrationResume action from the NCP 

service.  This action returns TCP session state from NCP and stores it at low power managed 

device. 

6.2.2.10 Unsubscribe Action 

The low power managed devices can request to Unsubscribe an action at the NCP service. The 

Unsubscribe action enables the NCP to de-register the previously subscribed action. 

  



 

Page 44 of 49 

  FP7-ICT-258454    D5.5 

6.2.3 Integration of UPnP Actions & NCP Rules 

The NCP implements several rules to maintain network presence of its sleeping clients by acting 

on their behalf. This operation implies three main issues: 

R1 knowing the power state of devices the NCP is covering; 

R2 being aware of traffic addressed to suspended clients; 

R3 representing, maintaining and exchanging service state for various protocols and 

applications. 

To cope with the above issues, the NCP must process packets addressed to sleeping/suspended 

clients and carry out specific tasks based on the registered rules by its clients. Several architectural 

components are required to build NCP as depicted in Figure 19. The detailed description of the 

rules is provided in the ECONET project report 49[25]. NCP rules pilot the NCP operations; they 

bind network traffic addressed towards sleeping clients to specific actions. NCP rules can be 

divided into three categories; (i) wake-up conditions, (ii) network level presence (e.g., network 

protocols), (iii) application level presence.  Wake-up mechanisms specify different wake-up 

methods for waking up specific sleeping client. Network traffic filter is an important component of 

the NCP that sniff, identify and process the packets intended for sleeping clients. Packet 

identification is normally based on the header information and/or packet content. The actions taken 

by NCP include; (i) buffer packets, wake-up the sleeping client and send buffered packets after 

wake-up, (ii) answer packets on-behalf of sleeping client, (iii) send periodic protocols/applications 

heartbeat messages on behalf of sleeping clients. A communication protocol is required for 

information exchange and actions registration between the NCP and its clients, which is based on 

the UPnP protocol as depicted in Figure 19. As described before, both NCP and its clients request 

actions from one another; NCP requests actions for managing/controlling the power state of its 

clients, NCP clients request actions from NCP for different kinds of presence proxying requests. 

Thus, both NCP and its client implements UPnP device as well as control point. Each UPnP action 

at NCP is linked with the respective NCP rules. NCP rules provide the real implementation of 

different proxying requests. NCP device state variables do not really represent the device status but 

are passed as arguments to UPnP actions, which are then subsequently passed as arguments to the 

NCP rules. 

 

Figure 19. Integration of UPnP actions and NCP rules. 

 



 

Page 45 of 49 

  FP7-ICT-258454    D5.5 

6.3 LowPower Service  

6.3.1 Description 

The LP service implements the power saving functionalities and is supposed to be provided by 

the low power managed devices. The detailed description of LP service is provided in UPnP Forum 

LP Device specification [23], [24]. This service enables the NCP to control the operational status of 

such devices. Each low power device is supposed to implement one or more sleep states. The low 

power device may enter into sleep state either autonomously by inactivity timer expiry or can be 

instructed by NCP. Table 3 shows a brief summary of UPnP power states and the link with those 

defined for the NCP. A detached bearer means the media is physically disconnected and may 

require some external human intervention to wake up the device. Finally, note that Table 3 maps 

UPnP power states into NCP power states, but the reverse relationship does not hold directly. 

Following the specifications of UPnP Device Architecture v1.0, the basic LP device and service 

description is shown below. LowPowerDevice1.xml defines all the actions supported by the LP 

service and the state variables/action parameters.  

Table 3. UPnP power states. 

UPnP Power State UPnP Operation Bearer operation Wake up mechanism NCP Power State 

Active Full Normal None Full power 

Transparent Sleep Full Power saving UPnP Wake Up action 

Autonomous 

Low power enabled 

Deep Sleep Online Partial Power saving UPnP Wake Up action Low power enabled 

Deep Sleep Offline Off Off Bearer-specific 

Non bearer-specific 

Autonomous 

Standby 

Disconnect Off Detached External Power off 

LP Device Description 
<?xml version="1.0" ?>  

    root xmlns="urn:schemas-upnp-org:device-1-0" configId="1"> 

             <specVersion> 

                    <major>1</major> 

                    <minor>0</minor>  

             </specVersion> 

             <device> 

                    <deviceType>urn:schemas-upnp-org:device:NetworkConnectionProxy:1</deviceType> 

                    <friendlyName>Jetway Atom Set-Top Box</friendlyName>  

                    <manufacturer>Jetway</manufacturer>  

                    <manufacturerURL>http://www.jetway.com.tw/</manufacturerURL>  

                    <modelDescription>Jetway Mini ITX with Atom N550</modelDescription>  

                    <modelName>Jetway JNC9C-550-LF</modelName>  

                    <modelNumber>1.0</modelNumber>  

                    <UDN> uuid:35681486-e0af-4a11-a4e8-180ade25f82b</UDN>  

                    <serviceList> 

                        <service> 

                           <serviceType>urn:schemas-upnp-org:service:PowerManagement:1</serviceType> 

                           <serviceId>urn:upnp-org:serviceId:PowerManagement:1</serviceId>  

                           <SCPDURL>/LowPowerDevice1.xml</SCPDURL> 

                           <controlURL>/control</controlURL> 

                           <eventSubURL>/eventing</eventSubURL>  

            </service> 

                </serviceList> 

         </device> 

    </root> 



 

Page 46 of 49 

  FP7-ICT-258454    D5.5 

6.3.2 State Variables 

The state variables are the reflection of the operational status of the low power managed devices. 

Detailed description of state variables is provided in UPnP Forum LP service template [25]. The 

low power devices keep NCP updated about their status through these state variables. The LP 

service state variables are briefly described in Table 4. 

Table 4 LP device state variables. 

State variable Type Description 

ExternalPowerSupplySource Integer This says whether the device is powered by an external power supply or 

by batteries. 

BatteryLow Boolean Indicate a low battery condition. 

PowerSupplyStatus String The description of power supplies status, both external and internal 

(connected/disconnected, battery charge, battery lifetime, etc.). 

SleepPeriod Integer The sleeping period before the device autonomously wakes up. 

SleepPeriodStart Integer This indicates the start of sleep period. It is useful if the device is 

expected to sleep during the specific period of the day. 

SleepPeriodEnd Integer This indicates the end of sleep period. It is useful if the device is 

expected to sleep during the specific period of the day. 

PowerState String Power state of the device. 

WakeUpMethod String Bearer-dependent method to wake up the device. 

 

6.3.3 Supported Actions 

The LP service provides a list of actions to the NCP. These actions enable NCP to 

manage/control the power state of the low power managed devices. Current actions provided by the 

LP service are briefly described below. 

6.3.3.1 GetPowerManagementInfo Action 

The NCP can request the GetPowerManagementInfo action from the LP service. The low power 

managed device returns power management related information in response to this action. This 

action enables the NCP to know the power supply status and procedure to wakeup the low power 

managed device.  

6.3.3.2 Wakeup Action 

This action enables the NCP to wake-up the low power managed device. The low power managed 

device provides notification to the NCP after successful wakeup along with the change of 

PowerState state variable.  

6.3.3.3 GoToSleep Action 

The NCP can request the GoToSleep action from the LP service. This action provides 

recommendation to the low power managed device to enter into specified sleep state for the 

specified period. The low power managed device may decline to sleep if it is busy or performing 

some operations.  

6.3.3.4 DefineSleepPeriod Action 

The NCP can request the DefineSleepPeriod action from the LP service. This action provides 

recommendation to the low power managed device to enter into specified sleep state during the 

specified period of the day. This action does not provide any output arguments as the device is 

expected to sleep at some later time. However, the updates about PowerState, SleepPeriodStart and 

SleepPeriodEnd state variables are provided to NCP whenever the low power managed device 



 

Page 47 of 49 

  FP7-ICT-258454    D5.5 

enters into sleep mode or wakes up. The low power managed device may decline to sleep if it is 

busy or performing some operations at the recommended sleep period start time.  

6.4 Conclusions and further work 

With the introduction of GAL standard interface and related methods, ECONET approach for 

power management in Telecommunication Networks is based on Protocol extensions that allows 

smooth introduction of the new technologies preserving compatibility with legacy network. 

Protocols can actually be used at different layers, starting from local protocol for proxy servers, to 

network control plane based on GMPLS PCC/PCE framework, taking also in consideration the 

current evolution towards NFV and SDN paradigms. 

GAL adaptation to different network management technology has been considered, 

demonstrating the opens and flexibility of the chosen ECONET approach. 

More specifically, the proposed Control Plane extension to carry Power Object information 

across the network, according to the ECONET GAL syntax is oriented to integrate in a simple way 

energy aware optimization algorithms, as the ones reported in D5.3. The proposal is simple, but 

concretely effective in making the energy aware routing techniques concretely applicable. 

The Network Power Monitoring framework, developing adaptation layers between the standard 

GAL interface and common management interfaces (such as Rest/XML, CORBA/TMF 814 and 

Broadband Forum TR-069/CWMP) is essential for extending the usage of the GAL interface 

outside a single physical object and then for exploiting its functionalities in complex distributed 

equipment and at the network level. These proposed extensions involve the most used management 

protocols and they contribute to make the GAL adoption a feasible task in a very large number of 

situations and scenarios. 

The Green extension of Openflow, enabling the usage of the GAL interface and methods into the 

emerging SDN paradigm has a twofold value: from one side, it projects the GAL in a very hot new 

network paradigm, SDN (effectively enabling its usage in future advanced equipment based on this 

approach); on the other side, it defines a very innovate way to extend the current Openflow protocol 

and architecture to handle the power management capabilities of the SDN devices.  

Finally, the Network Connectivity Proxy protocol has been introduced as a key asset of ECONET 

technology. It is based on a suitable extension of the UPnP standard protocol. Here again, an 

important work that, if concretely adopted, contributes in a valuable manner to make NCPs easier to 

introduce in most of the SOHO contexts. 



 

Page 48 of 49 

  FP7-ICT-258454    D5.5 

References 

[1] The ECONET project, “Final Design of Green Technologies for Network Device Data Plane”, 

Deliverable 3.3, available on line https://www.econet-project.eu. 

[2] The ECONET project, “Definition of energy-aware states”, Deliverable 4.1, available on line 

https://www.econet-project.eu. 

[3] The ECONET project, “Standard interface definitions”, Deliverable 4.2, available on line 

https://www.econet-project.eu. 

[4] The ECONET project, “Abstraction layer final definition”, Deliverable 4.3, available on line 

https://www.econet-project.eu. 

[5] The ECONET project, “Abstract layer prototypic implementation”, Deliverable 4.4, available 

on line https://www.econet-project.eu. 

[6] R. Bolla, R. Bruschi, F. Davoli, L. Di Gregorio, P. Donadio, L. Fialho, M. Collier, A. 

Lombardo, D. Reforgiato, T. Szemethy, “The Green Abstraction Layer: A Standard Power 

Management Interface for Next-Generation Network Devices” IEEE Internet Computing, vol. 

17, p. 82-86, 2013 

[7] R. Bolla, R. Bruschi, F. Davoli, P. Donadio, L. Fialho, M. Collier, A. Lombardo, D. 

Reforgiato, T. V. Riccobene Szemethy, “A Northbound Interface for Power Management in 

Next Generation Network Devices”, IEEE Communications Magazine, in press, Vol. 52, No. 

1, Jan. 2014. ISSN: 0163-6804. 

[8] A. Farrel, Old Dog Consulting, J.-P. Vasseur, Cisco Systems, Inc., J. Ash, AT&T – “A Path 

Computation Element (PCE) Based Architecture”, IETF RFC 4655, August 2006, 

http://ww.ietf.org/rfc/rfc4202.txt. 

[9] J. P. Vasseur, Cisco Systems, JL. Le Roux, France Telecom – “Path Computation Element 

(PCE) Communication Protocol (PCEP)”, IETF RFC 5440, April 2009, 

http://ww.ietf.org/rfc/rfc5520.txt. 

[10] E. Mannie, Ed. – “Generalized Multi-Protocol Switching (GMPLS) Architecture”, 

(IETF RFC3945, October 2004), http://ww.ietf.org/rfc/rfc3945.txt 

[11] The IETF Energy MANagement (EMAN) Working Group, 

https://datatracker.ietf.org/wg/eman/charter/ 

[12] ECONET Project, “End-user requirements, technology specifications and benchmarking 

methodologies”, Deliverable D2.1, available on line https://www.econet-project.eu. 

[13] Cisco, “Cisco Visual Networking Index: Forecast and Methodology, 2011-2016,” White 

paper, May 2012, URL: 

http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_pape

r_c11-481360_ns827_Networking_Solutions_White_Paper.html 

[14] Global e-Sustainability Initiative (GeSI), SMARTer2020: The Role of ICT in Driving a 

Sustainable Future, Report. http://gesi.org/SMARTer2020. 

[15] http://community.comsoc.org/blogs/alanweissberger/sdn-be-352-billion-market-2018-cyans-

blue-orbit-carrier-based-sdn-and-nfv-appl 

http://ww.ietf.org/rfc/rfc4202.txt
http://ww.ietf.org/rfc/rfc5520.txt
http://ww.ietf.org/rfc/rfc3945.txt
https://datatracker.ietf.org/wg/eman/charter/
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360_ns827_Networking_Solutions_White_Paper.html
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360_ns827_Networking_Solutions_White_Paper.html


 

Page 49 of 49 

  FP7-ICT-258454    D5.5 

[16] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, 

J. Turner, “OpenFlow: Enabling Innovation in Campus Networks”, ACM SIGCOMM 

Comput. Commun. Rev., vol. 38, no. 2, pp. 69-74, March 2008. 

[17] UPnP Forum. UPnP Device Architecture 1.0. October 15, 2008. Available: 

http://upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0.pdf. 

[18] UPnP Forum. UPnP AV Architecture:1. June 25, 2002. 

Available: http://www.upnp.org/specs/av/UPnP-av-AVArchitecture-v1-20020625.pdf. 

[19] J. Klamra, M. Olsson, K. Christensen, and B. Nordman, "Design and Implementation of a 

Power Management Proxy for Universal Plug and Play," Proceedings of the Swedish National 

Computer Networking Workshop (SNCNW 2005), Halmstad, Sweden, November 23-24, 

2005. 

[20] R. Khan, R. Bolla, M. Repetto, R. Bruschi, M. Giribaldi, “Smart Proxying for Reducing 

Network Energy Consumption” in Proceedings of the 2012 International Symposium on 

Performance Evaluation of Computer and Telecommunication Systems (SPECTS2012), 

Genoa, Italy, July 8-11, 2012. 

[21] R. Bolla, M. Giribaldi, R. Khan and M. Repetto, "Network Connectivity Proxy: An Optimal 

Strategy for Reducing Energy Waste in Network Edge Devices” in IEEE 24th Tyrrhenian 

International Workshop on Digital Communications, Genoa Italy, 23-25 September 2013. 

[22] R. Bolla, M. Giribaldi, R. Khan and M. Repetto, "Design and Implementation of Cooperative 

Network Connectivity Proxy using Universal Plug and Play", in 10th edition of Future 

Internet Assembly (FIA' 2013), Dublin, Ireland, May 2013.  

[23] UPnP Low Power Architecture, Version 1.0, August 28, 2007, vailable at: 

http://www.upnp.org/specs/lp/UPnP-lp-LPArchitecture-v1.pdf. 

[24] UPnP Forum. LowPowerDevice:1 Service Template, Version 1.01, August 28, 2007, 

available at: http://upnp.org/specs/lp/UPnP-lp-LowPower-v1-Service.pdf. 

[25] The ECONET project, “Network Connectivity Proxy: Maintaining Network Connectivity for 

sleeping hosts”, Internal Report n. 7 annexed to the “Final Design of Green Technologies for 

Network Device Data Plane”, Deliverable 3.3, available on line https://www.econet-

project.eu. 

http://upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0.pdf
http://www.upnp.org/specs/av/UPnP-av-AVArchitecture-v1-20020625.pdf
http://www.upnp.org/specs/lp/UPnP-lp-LPArchitecture-v1.pdf
http://www.upnp.org/specs/lp/UPnP-lp-LPArchitecture-v1.pdf
http://upnp.org/specs/lp/UPnP-lp-LowPower-v1-Service.pdf

	Disclaimer
	Copyright
	Table of Contents
	1 Executive Summary
	2 Introduction
	3 Control Plane reference architecture
	3.1 OSPF-TE protocol extension
	3.2 Interfacing Optimization algorithms

	4 GAL objects transport protocol for Network Power management
	4.1 GAL bindings for XML over HTTP REST
	4.1.1 Place of the GAL interface within the ECONET management framework
	4.1.2 Introduction to the REST-style interfaces
	4.1.3 Further network API bindings for the GAL
	4.1.4 The GAL REST XML Tree
	4.1.5 GAL operations
	4.1.5.1 Discovery
	4.1.5.2 Provisioning
	4.1.5.3 Release
	4.1.5.4 Monitoring
	4.1.5.5 Commit
	4.1.5.6 Rollback

	4.1.6 Distributed GAL access with REST API - concept

	4.2 GAL bindings for Corba / TMF-814  (Section 2)
	4.2.1 Architectural overview
	4.2.2 SPO1400 energy aware
	4.2.2.1 EAObject class
	4.2.2.2 EAContainer class
	4.2.2.3 EAEquipmentProfileInfo

	4.2.3 NBI TMF814 Impacts
	4.2.3.1 Energy awareness in TMF
	4.2.3.2 Energy Aware Management
	4.2.3.3 Energy capabilities realignment
	4.2.3.4 Realign Current Energy status
	4.2.3.5 Get Current Energy status
	4.2.3.6 Get Current Traffic Load
	4.2.3.7 Set Power Management Mode


	4.3 GAL bindings for TR-069
	4.3.1 Introduction
	4.3.2 Considerations
	4.3.3 Solution architecture
	4.3.4 Description of the Power Data Model
	4.3.5 Collection of History items


	5 Green extension of OPENFLOW
	5.1 Introduction
	5.2 Network Processor Architecture
	5.3 The OpenFlow Protocol Extension towards Green Capabilities
	5.4 In-Network Consolidation
	5.5 The In-Network Consolidation Algorithm
	5.6 Test Results

	6 Network Connectivity Proxy
	6.1 Overview
	6.2 NCP Service
	6.2.1 Description
	6.2.2 Supported Actions
	6.2.2.1 PingRequest Action
	6.2.2.2 DhcpRequest Action
	6.2.2.3 WakeOnConnection Action
	6.2.2.4 WakeOnPacket Action
	6.2.2.5 SendReplyOnPacket Action
	6.2.2.6 TcpKeepAlive Action
	6.2.2.7 HeartBeating Action
	6.2.2.8 TCPMigrationFreeze Action
	6.2.2.9 TCPMigrationResume Action
	6.2.2.10 Unsubscribe Action

	6.2.3 Integration of UPnP Actions & NCP Rules

	6.3 LowPower Service
	6.3.1 Description
	6.3.2 State Variables
	6.3.3 Supported Actions
	6.3.3.1 GetPowerManagementInfo Action
	6.3.3.2 Wakeup Action
	6.3.3.3 GoToSleep Action
	6.3.3.4 DefineSleepPeriod Action


	6.4 Conclusions and further work

	References

