

low Energy COnsumption NETworks

DELIVERABLE D4.3

ABSTRACTION LAYER FINAL DEFINITION

Grant Agreement Number: 258454

Project Acronym: ECONET

Project Title: low Energy COnsumption NETworks

Funding Scheme: Collaborative Project

Starting Date of the Project: 01/10/2010 dd/mm/yyyy

Duration: 36 months (original), 39 months (amendment request)

Project Coordinator:

Name: Raffaele Bolla

Phone: +39 010 353 2075

Fax: +39 010 353 2154

e-mail: raffaele.bolla@unige.it

Due Date of Delivery: M28 Mx (31/01/2013 dd/mm/yyyy)

Actual Date of Delivery: 05/02/2013 dd/mm/yyyy

Workpackage: WP4 – Green Abstraction Layer

Nature of the Deliverable: R

Dissemination level: PU

Editors:
DCU, CNIT, ALU, MLX, LQDE, TEI, WUT, NVR, LGT,

INFO

Version: 1.0

Page 2 of 36

 FP7-ICT-258454 D4.3

Disclaimer

The information, documentation and figures available in this deliverable are written by the

ECONET Consortium partners under EC co-financing (project FP7-ICT-258454) and do not

necessarily reflect the view of the European Commission.

The information in this document is provided “as is”, and no guarantee or warranty is given that

the information is fit for any particular purpose. The reader uses the information at his/her sole risk

and liability.

Copyright

Copyright © 2013 the ECONET Consortium. All rights reserved.

The ECONET Consortium consists of:

CONSORZIO NAZIONALE INTERUNIVERSITARIO PER LE TELECOMUNICAZIONI,

ALCATEL-LUCENT ITALIA S.p.A.,

MELLANOX TECHNOLOGIES LTD - MLNX,

LANTIQ Deutschland GmbH,

ERICSSON TELECOMUNICAZIONI,

TELECOM ITALIA S.p.A.,

GREEK RESEARCH AND TECHNOLOGY NETWORK S.A.,

NAUKOWA I AKADEMICKA SIEC KOMPUTEROWA,

DUBLIN CITY UNIVERSITY,

TEKNOLOGIAN TUTKIMUSKESKUS VTT,

POLITECHNIKA WARSZAWSKA,

NETVISOR INFORMATIKAI ES KOMMUNIKACIOS ZARTKORUEN MUKODO

RESZVENYTARSASAG,

ETHERNITY NETWORKS LTD,

LIGHTCOMM S.R.L.,

INFOCOM S.R.L.

This document may not be copied, reproduced or modified in whole or in part for any purpose

without written permission from the ECONET Consortium. In addition to such written permission

to copy, reproduce or modify this document in whole or part, an acknowledgement of the authors of

the document and all applicable portions of the copyright notice must be clearly referenced.

Page 3 of 36

 FP7-ICT-258454 D4.3

Table of Contents

DISCLAIMER .. 2

COPYRIGHT ... 2

TABLE OF CONTENTS .. 3

1. EXECUTIVE SUMMARY.. 4

2. INTRODUCTION .. 5

3. DEFINITION OF GAL ... 5

3.1. GAL MODULE .. 6

3.2. DEFINITION OF EAS AT THE DATA-PLANE .. 9

3.3. STANDARD INTERFACES TOWARD THE CONTROL-PLANE .. 10

4. IMPLEMENTATION OF THE GAL MODULE ... 11

4.1. GAL WORKFLOW ... 11

4.2. GAL API .. 13

4.3. GAL NAMESPACE ... 16

4.4. GAL STATE SPACE ... 17

5. CONCLUSIONS .. 18

APPENDIX A: NETFPGA-BASED GAL MODULE .. 20

A.1. NETFPGA PLATFORM .. 20

A.2. NETFPGA-BASED GAL MODULE ... 21

APPENDIX B: NETFPGA-BASED GAL IMPLEMENTATION WITH C/LINUX 25

B.1. SOURCE CODE STRUCTURE ... 25

B.2. PARAMETERS AND DATA STRUCTURE ... 28

APPENDIX C: THE IMPLEMENTATION OF THE GAL MODULE FOR THE DROP

ROUTER .. 34

REFERENCES ... 35

Page 4 of 36

 FP7-ICT-258454 D4.3

1. Executive Summary

The objective of the ECONET project is to investigate, develop and test new capabilities for

Future Internet devices that can enable the efficient management of power consumption and greatly

reduce the current network energy waste. To achieve this goal, the ECONET project focuses its

research and development efforts along three main research axes:

 Green Technologies for Network Device Data Plane

 Green Strategies at the Control Plane

 Green Abstraction Layer

WP4 is devoted to the definition and implementation of the Green Abstraction Layer, which

provides a standard and general purpose interface for exposing and controlling the novel green

capabilities and functionalities towards control and monitoring frameworks.

This document is the final definition and specification of the ECONET Green Abstraction Layer

(GAL). It refines and completes the definition of the GAL structure and energy-aware capabilities

presented in deliverable D4.1, and further details the Green Standard Interface and the basic

command set defined in deliverable D4.2. Deliverable D4.1 introduced the GAL by discussing its

applicability scenario and its design goal, by proposing a first design of the GAL hierarchical

architecture, and defining what energy-aware states are and how they must be represented.

Deliverable D4.2 introduced the Green Standard Interface definition and the basic command set of

the Green Standard Interface. Building on deliverables D4.1 and D4.2, this deliverable gives the

final definition of GAL architecture, energy-aware states at data-plane and standard interfaces

towards the control-plane, and provides the detailed description of the implementation of the GAL

module.

The GAL framework is currently being discussed for standardization within the European

Telecommunications Standards Institute (ETSI) Environmental Engineering Technical Committee

under Work Item DES/EE-0030.

Page 5 of 36

 FP7-ICT-258454 D4.3

2. Introduction

The Green Abstraction Layer (GAL) research axis of ECONET project is devoted to the study

and the development of the GAL and is the key to the integration and the development of the

energy-aware device prototype platforms, including both the data-plane green capabilities and

control strategies. The GAL defines a novel standard way for managing and monitoring energy and

performance profiles of device hardware.

The GAL is a standard interface between data and control planes for exchanging data regarding

the power status of a device. This standard interface is specifically conceived to hide the

implementation details of energy-saving approaches, as well as to provide standard interfaces and

methodologies for interactions between heterogeneous green capabilities and hardware (HW)

technologies, on one hand, and control and monitoring frameworks, on the other hand. Using the

GAL control, applications can access information on power management settings available at the

data-plane and on the potential effect of using such settings. In addition, control applications will be

capable of setting power-management configurations on the device data-plane.

In order to provide the information needed by control applications to reduce the energy

consumption while meeting Quality of Service (QoS) constraints, the GAL must explicitly represent

the impact on network performance when different power management settings are applied. Thus,

the GAL defines the Energy-Aware State (EAS) as an operational power profile mode of an entity

that can be configured by control plane processes. To assure the correct exchange of information,

EASes are represented by a complex data type, which contains indications on the power

consumption and the performance of an entity when working in such a configuration.

The Green Standard Interface (GSI) is a simple internal interface of the GAL for exchanging

power management information among data-plane elements and processes realizing control plane

strategies in a standard and simplified way. In order to implement the GAL architecture, ECONET

defines a set of abstract commands that work at different detail levels and that can be applied for

intercommunication between the control plane and the data plane.

This deliverable presents the final definition of the GAL, EAS and GSI, and provides a detailed

description of the implementation of the GAL module. The document is organized as follows:

Section 3 defines the hierarchical structure of the GAL as well as the definition of EAS and GSI;

Section 4 presents the implementation scheme for the GAL module. Appendix A and B show the

implementation of the GAL module for a NetFPGA Frequency Scaled Router, and define the

structure and functionalities of the GAL module.

3. Definition of GAL

To inhibit energy waste due to over-provisioned capacity, hardware devices of next generation

networks are expected to include advanced power management capabilities, which can enter

different power states according to the input traffic while ensuring the quality of service (e.g.,

entering sleep-mode during idle intervals and scaling the processing power according to the offered

workload) [1][2], and such devices and technologies are already available [1]. At the same time,

network protocols are extending with energy-aware information, and evolving towards energy-

efficiency, by adding energy-indexes into network optimisation strategies [4][5]. The efficiency of

the power management of network devices heavily depends on the specific implementation and

Page 6 of 36

 FP7-ICT-258454 D4.3

low-level details of the hardware platforms of devices, which may be quite heterogeneous and can

prevent network-wide control policies (NCPs) from maintaining knowledge of underlying hardware

peculiarities related to energy consumption. To overcome these challenges, the ECONET project

has developed the GAL and the GSI, providing a standard method for accessing and managing

power states between the low-level hardware components and control processes; it has also

specified and developed the concept of EAS, defining the operational power profile modes of

network devices which can be configured by control plane processes.

3.1. GAL Module

Power management is usually realized inside hardware components of the network device, while

network control processes (e.g., routing protocols, traffic engineering frameworks, etc.) run at the

device level [6][7]. NCPs often treat a network device as a node in a graph, and may not have the

ability of discriminating how logical network entities can be mapped onto physical components

which directly cause energy absorption. When new device configurations are decided by control

processes, they have to be translated into specific settings of components at underlying levels. For

example, if a control-plane process decides to scale the speed of a path, it has to pass this command

to the chassis, and then to the line-card, and then to the related hardware components (e.g., chips,

link interfaces, etc.). Thus, a single configuration decided at the device level, depending on the

internal device architectures, may impact on multiple underlying components. Where this process

terminates depends on the device level individual manufacturers make public. In order to address

these complex aspects and internal iterations, the ECONET project modelled the GAL with a

hierarchical representation of the device, representing the components at the various levels, and

providing a standard exchange of information among the policies at various levels.

The reference module of the GAL is as shown in Figure 1. The GAL is located between data-

plane green capabilities and control-plane strategies, it provides a common and hardware-

independent interface (i.e., the GSI) to control processes, and hides the heterogeneous hardware

implementation details by means of the convergence layer interface (CLI).

Link
Interface

Link
Interface

Processor
Core
Chip

Fan

Green Abstraction Layer (GAL)

LCPs
Smart Standby
Power scaling

NCPs
Routing Tactics

Traffic Engineering

Network-wide
Monitor & Management

Control
Plane

Data
Plane

Green Standard Interface
(GSI)for Control Plane

Convergence Layer Interface
(CLI)for Data Plane

Figure 1: The role of the Green Abstraction Layer.

Page 7 of 36

 FP7-ICT-258454 D4.3

Northbound, the main sets of control plane processes [9] supported are:

 Local Control Policies (LCPs): that dynamically optimize the rate of energy consumption to

maintain network performance as traffic load changes. The LCPs are dependent on the

structural information of the devices they are controlling, including the internal architecture,

topology structure and energy-aware capabilities of each device element. LCPs use this

information combined with network performance indices to achieve optimization.

 Network-wide Control Policies (NCPs): which provide device group optimisation

capability for network level behaviours such as traffic flow path optimisation with

guaranteed network performance for reducing overall network energy consumption.

 Network Monitoring and Management frameworks: which support user-driven

configuration instead of autonomic configuration and extend current network technologies

and protocols by considering energy metrics.

Southbound, the GAL deals with data-plane physical components whose power consumption can

be controlled and monitored [9]. Such components may be:

 Hardware components: such as integrated circuits (ICs), General Processing Units (GPUs),

connectors or controllers, link interfaces, etc. These hardware components provide power

scaling and standby primitives, which allow energy management operations including

energy consumption monitoring.

 Auxiliary systems: such as power supply, cooling systems including fans, etc. Energy

management operations can tune these auxiliary systems’ performance to match the energy

configuration of the host device.

Control strategies may act at various levels (e.g., single component, line-card, chassis and device

levels), and this depends on the internal topology/architecture of the device and manufacturers'

preference. For example, fans in a chassis and in a line card have different accessibilities for the

control-plane, and some manufacturers shall prefer not to expose the internal architecture and the

subcomponents of a composite part of the device (e.g., line-card, chassis, etc.). Therefore, control-

plane processes must be capable of setting components (at various resolution levels) into a certain

energy configuration in terms of power consumption and performance through the GAL. Starting

from these considerations, the ECONET project defined the GAL following the hierarchical

structure represented in Figure 2.

The GAL provides a hierarchical representation of device data-plane architectures, and represents

a device or the sub-components of it at various levels as Entities, which can be accessed by control-

plane processes through the GSI. Higher-level entities may attach one or more entities at lower

levels. The hierarchy depth must depend on the specific internal architecture of the network device.

At the highest level (i.e., device level), the entire device corresponds to an entity (Entity 1). At

medium hierarchical levels, it may correspond to line-cards, chassis, etc. For example, Entity 1.2 in

chassis level, Entity 1.2.2 in line-card level. At the lowest hierarchical level (i.e., hardware

component level), an entity (e.g., Entity 1.2.2.2) may correspond to a chip, a processor, a link

interface. The specific hierarchical structure of the GAL depends on the internal

topology/architecture of the device and manufacturers' preference. The communication between the

GAL and physical components is realized through the CLI, which includes all the drivers for setting

or acquiring parameters from the supported energy-aware physical elements through the access to

registers and tables dependent on the specific hardware development.

Page 8 of 36

 FP7-ICT-258454 D4.3

GSI

Entity 1

LCP
Device
Level

GSI

Entity 1.1

CLI

GSI

Entity 1.2

LCP

Chassis
Level

GSI

Entity 1.2.1

CLI

GSI

Entity 1.2.2

LCP

GSI

Entity 1.2.3

CLI

GSI

Entity
1.2.2.1

CLI

GSI

Entity
1.2.2.2

CLI

GSI

Entity
1.2.2.3

CLI

GSI

Entity
1.2.2.4

CLI

GSI

Entity
1.2.2.5

CLI

Line-card
Level

Hardware
component
Level

Direct access to

the hardware

component if

manufacturers

prefer not to

expose the

internal

architecture of

chassis/linecard

Direct access to

the hardware

component If

the physical

resource is

available at

intermediate

layers (e.g.,

fans in chassis)

Logical Entity
1.1.0.0

Logical Layer

Physical Layer

Logical Entity
1.2.1.0

Logical Entity
1.2.2.6

Logical Entity
1.2.3.0

...

Chip
in

Card
II

Optical
Port in
Card II

Ethernet
Port in
Card II

Fan in
Card II

Fan in
Chassis

II

Card I
in

Chassis
II

Card II in
Chassis II

Chassis I
in

Device I

Data

Plane

Control
Plane

SNMPOSPF
Network Control

Processes
OAM

Chassis II
in

Device I

Device I

CPU
in

Card
II

Figure 2: The hierarchical structure of the Green Abstraction Layer.

The GAL framework is a multi-layer hierarchical interface that allows the intercommunication

among multiple local and network-wide control planes and the data-plane hardware. The different

layers present various abstraction levels of a power-managed device. At the top of the hierarchy the

GAL connects NCP processes, which work on the logical resources of the device and often lose the

details on how they can be mapped onto internal hardware components, where power consumption

and management physically happen. Thus, NCPs may drive power configurations of network

devices only by means of such logical resources. The GAL consequently exposes a number of

“hooks” towards NCPs by adding a further GAL layer just above the device level, one for each

logical resource, and abstract/aggregate there the power settings available at the physical layer.

Therefore, the GAL has the following features:

 Provides a hierarchical view of the different hardware components of network devices, and

hides the hardware components’ architecture and complexity from the management system;

 Provides a structured methodology for the control-plane to acquire and manage the energy-

aware capabilities of GAL-compliant devices;

Page 9 of 36

 FP7-ICT-258454 D4.3

 Enables LCPs to translate high-level commands (passed through the GSI) from the control-

plane into low-level commands towards the data-plane;

 Enables the highest-level LCP to expose all the logical resources of network devices, whose

number and types are dynamic and depend on the device configuration, to the NCPs;

 Facilitates NCP-LCP and inter-device LCP-LCP communication, and enables NCPs to see

the effect of the application of a LCP and to set parameters or constraints that determine the

operating behaviour of the LCP.

3.2. Definition of EAS at the Data-Plane

Using the GAL, control applications can get information on energy-aware settings available at the

data-plane, and are capable of setting a certain energy-aware configuration on the device data-plane.

Different hardware components provide heterogeneous energy-aware capabilities, and the

formalization of energy-aware control parameters is done through the definition of EAS.

An Entity is defined [9] as a device or sub-component of a device which the GAL can access and

configure through a standard interface. An Entity can exist at a number of levels, i.e.: an integrated

circuit, a network processor or a link interface at a component level; line-cards, chassis, etc. are

examples of intermediate level entities; or the entire device itself at the highest level. Higher-level

entities can include one or more entities at lower (and multiple) levels. The depth and the hierarchy

of the entire device entity are dependent on the internal topology/architecture of each specific

network device.

An Energy-Aware State (EAS) is defined [9] as an entity power setting that can be configured

through the GAL, and that may impact on the power consumption, the performance, the available

functionalities, and the responsiveness of the same entity. An EAS can be considered as an

operational power profile mode implemented by the entity that can be configured by control plane

processes. To assure the correct exchange of information between the entity and control plane

processes, the EAS is represented as a complex data type, containing indications on the power

consumption, the performance, the available functionalities, and the responsiveness of the entity

when working in such configuration.

The energy-aware capabilities implemented by ECONET are dynamic power scaling and smart

standby. Power scaling is the capability of adjusting the energy requirement of an entity by

dynamically scaling its processing frequency or the transmission and reception speed, while smart

standby is the capability of an entity to switch itself or a part of itself into a very low energy mode,

providing only some vital functionalities (e.g., wake-up triggers). The energy-aware capabilities

have different operational behaviours depending on the specific implementation, (i.e., the device

intelligence), and the hierarchical level of an entity. Some aspects may be managed by control

processes external to the entity, some others by the entity itself in an autonomic way depending on

its workload. Only those Entities controllable by the control-plane processes can be represented as

different EASes.

Control processes select the EAS that provides the desired operational behaviour to meet QoS

constraints. EASes are associated with attributes (e.g., maximum throughput, power consumption,

wake-up time), for characterising the performance and power consumption under each EAS setting.

Assuming there are totally N available EASes, each EAS can be modelled as a list of attributes:

𝑆𝐸𝐴𝑆
(𝑛)

= {𝑃𝑤
(𝑛)
, 𝑃𝑟

(𝑛)
, 𝑇𝑑

(𝑛)
} 𝑛 ∈ {0,1, … ,𝑁 − 1}

Page 10 of 36

 FP7-ICT-258454 D4.3

where:

 𝑆𝐸𝐴𝑆
(𝑛)

 represents the 𝑛𝑡ℎ EAS,

 𝑆𝐸𝐴𝑆
(0)

 is the sleeping state where the entity is turned off and the maximal power saving can

be obtained,

 𝑆𝐸𝐴𝑆
(1)

 is a low-power state with the lowest performance level while still being active

(consumes the least power in active state),

 𝑆𝐸𝐴𝑆
(𝑁−1)

 is the highest-power state with the highest network performance (it also consumes

the highest power),

 𝑃𝑤
(𝑛)

 are the power consumption related values (e.g., power consumption, power saving

gain compared with the highest-power state), which are useful to estimate the global

energy absorption of the equipment when working with the selected EAS,

 𝑃𝑟
(𝑛)

 are network performance related indexes (e.g., throughput, packet drop rate), which

are needed to verify if the current energy state meets the QoS requirements to serve the

expected offered-load,

 𝑇𝑑
(𝑛)

 are state transition features (e.g., wake-up time), which allow the control processes to

evaluate the set of states (EASes) reachable from the selected one, giving information

regarding transition delays or possible service interruption periods of the device.

3.3. Standard Interfaces toward the Control-Plane

The GAL framework includes two main interfaces, namely, the GSI and the CLI. The former

represents the standard part of the GAL and the latter maps GAL commands and data into low-level

configuration registers/APIs, which are often manufacturer/HW specific. The GSI provides the

command set necessary to setup the power management and monitoring of a wide set of energy-

aware resources and network devices. In other words, the GSI is used to access resources and their

power characteristics discovery, the autonomic provisioning and manual configuration of resources,

the monitoring and the decommissioning of energy-aware physical resources.

In order to communicate with NCPs through logical resources, a logical layer is included on top

of the highest-level LCP of the HW tree (the one working at the device level), as represented in

Figure 2. The logical resources are mappings of certain physical entity/entities and locate on top of

the GAL root. The type and the nature of logical resources depend on the specific network device.

The number of leafs of GAL nodes depends on the specific network device architecture and on

manufacturer integration choices. The visibility of internal structural and architectural details

including control mechanisms varies from manufacturer to manufacturer. Devices may have full or

partial autonomic capabilities and because of this each GAL node is designed [8] to accommodate a

number of children at different levels. However if no children are present, then a direct binding to

the data-plane must be present.

The GSI manages all accesses to GAL resources. Access permissions including “read/write” are

hierarchical. In other words, information and control at lower levels is only available to high(er)

level LCPs. All instances of GSIs in the hierarchy structure provide the same methods and data

types. EAS data structures represent all available and configurable energy-aware settings of entities.

Each GSI method is singular (i.e., one configuration change requests one command), and multiple

commands are not allowed. The GSI supports “commit/rollback” methods, which provides

Page 11 of 36

 FP7-ICT-258454 D4.3

flexibility to investigate configuration options (e.g., a chain of different EAS requests), before

committing changes to the device HW. The performance indexes and available EASes for each

entity will be updated if an EAS configuration command is sent through the GAL.

The GSI is the northbound interface of a generic GAL instantiation. Although the exact

implementation will depend on the devices deployed in a specific instance (e.g., network elements,

network cards, chips, fans, and so on), ECONET specifies a set of messages and workflows

defining the abstract messages to enable the GAL interface to operate. The main functionalities

offered by the GSI are the following:

 Discovery: used to retrieve information about: available power states and other descriptive

information of the entity; monitoring points for reading power-related information; the list

of individually manageable components within the entity and their relation (both logical and

physical).

 Provisioning: It allows the configuration of an entity into a certain power state.

 Release: It allows the release of already configured physical devices, in the sense that the

device assumes its default configuration.

 Monitoring: It permits to monitor relevant parameters (state, power consumption, etc.) of

the physical device.

 Commit: It confirms the changes done in the provisioning request.

 Rollback: It is the inverse of the Commit command. It undoes the changes done in the

provisioning request, or rolls back to the last committed configuration.

4. Implementation of the GAL Module

This section describes the actions of implementing the GAL. Note, however, that it is not

intended to constrain the internal architecture of any conformant implementation. To give hardware

vendors flexibility in choosing their implementation, we use tables to describe system information,

features, and methods for controlling those features.

4.1. GAL Workflow

To generalize the GAL workflow of managing and monitoring the power configuration of

hardware elements in a network device, let us consider a simple example of EAS configuration

through the GAL, and the procedures can be divided into five phases. In the first phase, the NCP

(e.g., routing protocol extended to consider energy-aware metrics) acquires the current EAS and the

available EASes (with their associated attributes) from all network nodes. In the second phase, upon

the acquisition of all the available EASes and their associated attributes and on the basis of

available traffic and network performance constraints, a centralized or distributed algorithm

computes a new network configuration, which will include updates of the routing/switching tables

and of configuration parameters in each node. In the third phase, the local instance of the routing

protocol updates routing/switching table entries and interacts with the device-level LCP to assure

that the LCP works under the required configuration parameters, such as the set of EAS candidates,

the decision-making interval, and the wake-up time when working in smart standby mode. In the

fourth phase, the device-level LCP searches which sub-entities are involved, and forwards the

incoming request towards lower-level entities; this phase iterates by medium-level LCPs, until it

Page 12 of 36

 FP7-ICT-258454 D4.3

reaches the bottom-level LCP, which can directly access data-plane hardware components by means

of the CLI. In the fifth phase, the bottom-level LCPs dynamically configure the EASes of each

component.

From this procedure, we can see that control-plane processes finally reach the device level entity

in order to acquire EAS information, and provision or monitor the state of each of the logical

entities in the device. Therefore, each device-level entity should provide a User Interface for

implementing the command set mentioned above. The main workflow of managing and monitoring

the power configuration can be generalized as in Figure 3.

Agent

GAL Library

Local Control Policy (LCP)

Tables of Hardware Driver

Control-Plane

Hardware

Data Plane Hardware Register

User Interface

Device Module

Logical Resource

Logical entity ?
NoYes

Hardware Module

Figure 3: Workflow of GAL Implementation.

 The control-plane processes generate an appropriate control message, which consists of a

version identifier (e.g., version-1.0), an application name (e.g., OSPF-TE/RSVP-TE

[4][5]), and a protocol data unit (PDU), which contains the command and its parameters

for power management.

 The device-level entity has an Agent to receive control-messages. The agent performs a

rudimentary parse of the incoming control-messages, and verifies the version number,

application name, and source and destination addresses. If the parse is successful, it passes

the PDU to the User Interface which implements the desired functionality. If the parse

fails, it discards the datagram and performs no further actions.

 The User Interface calls the corresponding functionality from the GAL Library.

 The corresponding functionality in the GAL Library forwards the request to the specific

device Module.

Page 13 of 36

 FP7-ICT-258454 D4.3

 If the command can reach the logical entity, the device module calls the corresponding

functionality in the logical resources, and the logical resource functionality passes the

request to the Local Control Policy (LCP). Otherwise, the device module directly calls the

LCP.

 The corresponding functionality of the LCP interprets the high level states and sets the

corresponding low level states in the hardware module.

 The hardware module finally reaches the hardware component by accessing the

corresponding hardware registers or corresponding tables of the hardware driver.

The basic structure of the control-message is as shown in Table 1. It is mandatory that all

implementations of the GAL support the six PDUs: Discovery-PDU, Provisioning-PDU, Release-

PDU, Monitoring-PDU, Rollback-PDU and Commit -PDU.

Table 1: The basic structure of the control message.

Field Value Description

Version INTEGER Indicates the version of this GAL protocol

Application OCTET STRING Indicates the application name which sends the message

PDU ANY Indicates the command and its parameters for power

management.

4.2. GAL API

The Green Standard Interface (GSI) is the northbound interface of a generic GAL instantiation.

Although the exact implementation will depend on the devices (e.g., network elements, network

cards, chips, fans, and so on…), we propose a set of abstract messages here (i.e., APIs) to enable the

GAL interface to operate. The API offered by the GSI is listed in Table 2.

Table 2: GSI API.

Functionality Direction Description

DISCOVERY

Information request

GAL client → Entity

It is used to retrieve information about: the current

power state set in the entity; available power states and

other descriptive information of the entity; monitoring

points for reading power-related information.

Information response

GAL client ← Entity

It returns the list of individually manageable

components within the entity and their relations (both

logical and physical).

PROVISIONING

Configuration command

GAL client → Entity

It allows the configuration of an entity into a certain

power state.

Configuration notification

GAL client ← Entity
It returns the operating results.

Page 14 of 36

 FP7-ICT-258454 D4.3

Functionality Direction Description

RELEASE

Decommissioning command

GAL client → Entity

It allows the release of already configured physical

devices, in the sense that the device assumes its default

configuration.

Decommissioning notification

GAL client ← Entity
It returns the operating results.

MONITORING

Parameters request

GAL client → Entity

It permits to monitor relevant parameters (state, power

consumption, etc.) of the physical device.

Parameters notification

GAL client ← Entity
It returns the operating results.

COMMIT

Confirmation command

GAL client → Entity

It permits to confirm the changes done in the

provisioning request.

Confirmation notification

GAL client ← Entity
It returns the operating results.

ROLLBACK

Rollback command

GAL client → Entity

It is the inverse of the Commit command. It undoes the

changes done in the provisioning request, or rolls back

to the last committed configuration.

Rollback notification

GAL client ← Entity
It returns the operating results.

The next paragraphs introduce each API and its parameters. The DISCOVERY command permits

the retrieval of a set of available pieces of information about the selected device. The DISCOVERY

command parameters are shown in Table 3.

Table 3: The parameters of DISCOVERY.

Parameter Value Direction Description

resource_id char IN The ID of the resource that should perform the action

committed bool IN

If TRUE (or 1), returns the information of the last

committed state;

If FALSE (or 0), returns the information of the current

state (set with the last provisioning command).

logical_resources list OUT The list of logical resources of the device

physical_resources list OUT The list of physical resources of the device

sensor_resources list OUT The list of sensors resources of the device.

power_states list OUT The list of power states available for the device

edl list OUT The list of the optimal configurations for the device

The PROVISIONING command permits configuration of the power state of the selected entity,

and its parameters are shown in Table 4.

Page 15 of 36

 FP7-ICT-258454 D4.3

Table 4: The parameters of PROVISIONING.

Parameter Value Direction Description

resource_id char IN The ID of the resource that should perform the action

power_state int IN The power state that has to be set for the entity

The MONITORING set of commands permits monitoring the current power state of a resource,

the history of the power states previously occupied on a resource and the current readings of a

sensor. The parameters of each function are shown in the following Tables.

Table 5: The parameters of MONITOR STATE.

Parameter Value Direction Description

resource_id char IN The ID of the resource that should perform the action.

power_state int OUT The current power state of the entity.

Table 6: The parameters of MONITOR SENSOR.

Parameter Value Direction Description

resource_id char IN The ID of the resource that should perform the action.

oper_status char OUT The operational status of the sensor.

sensor_value list OUT

The list of current values of the sensor reading.

Valid values are:

voltsAC: electric potential

voltsDC: electric potential

amperes: electric current

watts: power

hertz: frequency

celsius: temperature

other: a measure other than those listed above

unknown: unknown measurement

value_timestamp TIME OUT The timestamp of the reading.

Table 7: The parameters of MONITOR HISTORY.

Parameter Value Direction Description

resource_id char IN The ID of the resource that should perform the action.

power_state_history list OUT
The list of power states committed on the resource, in

descending order of the time committed.

Page 16 of 36

 FP7-ICT-258454 D4.3

The RELEASE command puts the device or entity into its default configuration. The COMMIT

command permits confirmation of the changes made in the provisioning request, and its parameters.

Finally, the ROLLBACK command allows a return back to the last committed state, and its

parameters. The parameter for each function belonging to this set of commands is shown in Table 8.

Table 8: The parameter of RELEASE, COMMIT, and ROLLBACK.

Parameter Value Direction Description

resource_id char IN The ID of the resource that should perform the action

Every function returns the operating results in a status code, which can indicate success, various

errors, and possibly a timeout from the GAL modules. This is necessary because it is possible for

certain GSI commands to take up a few seconds to carry out, and since the operation from NCPs is

synchronous by nature, it is essential to make sure the GSI function returns in a timely fashion, so

as not to block the NCPs decisions. We define the status code as follows:

Table 9: Status code for GSI functionalities.

Status

Code
Name Description

-1 GAL_TIMEOUT Indicates the operation timed out

0 GAL_SUCCESS Indicates the command has been successfully completed

1 GAL_ERROR Indicates a general error

2 GAL_NOT_IMPLEMENTED Indicates the power management function is not

implemented on the selected resouce_id

4 GAL_RESOURCE_NOT_FOUND Indicates the resource_id provided on the request is

non-existent

8 GAL_RESOURCE_NOT_AVAILABLE Indicates the resource_id provided on the request is not

available at the moment

4.3. GAL Namespace

For all Definition Blocks, the system maintains a single hierarchical namespace that it uses to

refer to objects. All Definition Blocks load into the same namespace. Although this allows one

Definition Block to reference objects and data from another (thus enabling interaction), it also

means that implementations must take care to avoid any naming collisions. Only an unload

operation of a Definition Block can remove names from the namespace, so a name collision in an

attempt to load a Definition Block is considered fatal. The contents of the namespace changes only

on a load or unload operation.

The namespace is hierarchical in nature, with each name allowing a collection of names "below"

it. All names begin with "GAL", and the object in each hierarchy is preceded with an underscore

"_". Figure 4 below shows a sample of the GAL namespace.

Page 17 of 36

 FP7-ICT-258454 D4.3

GAL Lib

GAL_Object1

GAL_Object2

Device1

Logical_resource

GAL_Module_Device1_Logical_resource_Object2

LCP

GAL_Module_Device1_Object1

GAL_Module_Device1_Object2

GAL_Module_Device1_Logical_resource_Object1

GAL_Module_Device1_LCP_Object2

Component

GAL_Module_Device1_LCP_Object1

GAL_Module_Device1_LCP_Component_Object2

GAL_Module_Device1_LCP_Component_Object1

Figure 4: Namespace of GAL Implementation.

4.4. GAL State Space

In order to realize the functions of these commands, each logical entity should use two variables

to restore state information: provisioned_state and committed_state. The state of a logical entity is

the combination of these two variables, and will change after different GAL commands.

Figure 5 contains the entity state transition diagram which describes the different possible states

and the transitions between states (which are the consequence of the use of such commands). The

provisioned_state and committed_state of each logical entity can be set to the DEFAULT_STATE

after the initialization operation in implementation. The provisioned_state will be set with the

provisioned_state, and the committed_state will remain unchanged if the entity receives the

PROVISIONING command. The COMMIT command will set the committed_state with the last

provisioned provisioned_state, while the provisioned_state remains unchanged. The ROLLBACK

command will set the provisioned_state with the last committed committed_state, while the

committed_state remains unchanged. The RELEASE command will set the provisioned_state with

DEFAULT_STATE, which has the same effect as the PROVISIONING command with the

parameter of DEFAULT_STATE. The DISCOVERY command can return either information

regarding the current committed_state or regarding the provisioned_state, which depends on the

parameter sent with this command. The MONITORING command always returns information

regarding the current committed_state of the entity.

Page 18 of 36

 FP7-ICT-258454 D4.3

Provisioned_state = DEFAULT_STATE
Committed_state remains unchanged

Provisioned_state = Provisioned_state
Committed_state remains unchanged

PROVISIONING

Provisioned_state remains unchanged
Committed_state = Provisioned_state

CO
MM
IT

Provisioned_state = Committed_state
Committed_state remains unchanged

ROLLBACK

RELEASE

RE
LE
AS
E

PROVISIONING

RELEASE

RELEASE

PR
OV
IS
IO
NI
NG

COMMIT

COMMIT

RO
LL
BA
CK

PROVISIONING

ROLLBACK

 Figure 5: Logical Entity State Transition Diagram.

5. Conclusions

This report represents the final definition of the Green Abstraction Layer (GAL) and the detailed

description of the implementation of the GAL module.

In more detail, the GAL has been defined to be a standard interface between the data and control

planes for exchanging information regarding the power status of a device. By means of the GAL, on

one hand, control applications will be allowed to get information on how many power management

settings are available at the data-plane, and on the potential effect of using such settings. On the

other hand, control applications will be capable of setting a certain power-management

configuration at the device data-plane.

In order to provide the information needed by control applications to reduce the energy

consumption while meeting the QoS constraints, the GAL defines the Energy-Aware State (EAS) as

an operational power profile mode of an entity that can be configured by control plane processes.

To assure the correct exchange of information, EASes are represented by a complex data type,

which contains indications on the power consumption and the performance of an entity when

working in such a configuration.

To be GAL compliant, the network device needs to support and implement six types of control

messages: discovery, provisioning, release, monitoring, rollback, and commit.

Page 19 of 36

 FP7-ICT-258454 D4.3

The Green Standard Interface (GSI) is a simple internal interface of the GAL for exchanging

power management information among data-plane elements and processes realizing control plane

strategies in a standard and simplified way. In order to implement the GAL architecture, ECONET

defines a set of commands that work at different detailed levels and that can be applied for

intercommunication between the control plane and the data plane.

Related publications for the GAL can be found in [10] - [13], and the GAL code documentation

can be found in ECONET deliverable D4.4 [19]. Seven prototype implementations of the GAL have

been realised, tested, evaluated and successfully demonstrated during the ECONET project; two of

these prototypes are described in Appendices A-C (below). The seven prototypes range from home

gateways to high-end switches and routers, further details on these can be found in D6.4 [20].

The implementation of the GAL module for the NetFPGA Frequency Scaled Router [15][16]

(based on the NetFPGA platform [14])- is introduced in Appendixes A and B. The source code

structure and functionalities of the GAL module implemented for the NetFPGA-based Frequency

Scaled Router are shown.

The implementation of the GAL module for the Drop Router [10] is summarised in Appendix C.

The DROP router is an open source software router with a modular architecture based on Linux and

commercial off-the-shelf hardware.

The GAL framework is currently being discussed for standardization within the European

Telecommunications Standards Institute (ETSI) Environmental Engineering Technical Committee

under Work Item DES/EE-0030.

Page 20 of 36

 FP7-ICT-258454 D4.3

Appendix A: NetFPGA-based GAL module

This appendix introduces the implementation of the GAL module on the NetFPGA platform,

which is an open source hardware and software platform that developers can easily and quickly

implement to test new protocols and techniques.

A.1. NetFPGA Platform

The NetFPGA platform is an accelerated network hardware platform that augments the functions

of a standard computer. It is becoming increasingly popular in various research areas, as it is a

hardware customizable router that can be used to study, implement and test new protocols and

techniques directly in hardware, providing the researchers with the possibility to experience a more

realistic experiment environment. For the NetFPGA 1G reference router, two SRAMs and the core

logic FPGA (Xilinx Virtex II pro) work synchronously. The board comes with an inbuilt register,

which enables the researchers to manually switch the operational frequency between 125 MHz and

62.5 MHz. However, a limitation with the current NetFPGA reference board is that the frequency

switch causes the board to reset and all packets being processed, in input or output queues or

SRAM, are lost.

DCU and LGT implemented a new Dynamic Frequency Scaled Router, which provides dynamic

frequency scaling capabilities between 5 different core clock frequencies: two different frequency

sets were designed and evaluated (125MHz, 83.3MHz, 62.5MHz, 50MHz, and 41.7MHz) and

(125MHz, 62.5MHz, 31.3MHz, 15.6MHz, and 7.8MHz). This provides more finely tuned

frequency switching capability into the NetFPGA router. The implementation also addressed and

eliminated the board reset problem securing the data being processed during switching.

MAC Rx1

CPU Rx1

MAC Rx2

CPU Rx2

MAC Rx0

CPU Rx0

MAC Rx3

CPU Rx3

Input

Arbiter

Output

Port

Lookup

MAC Tx1

CPU Tx1

MAC Tx2

CPU Tx2

MAC Tx0

CPU Tx0

MAC Tx3

CPU Tx3

Output

Queues

SRAM

Core Logic

With frequency scaling

capabilities

Buffers

Buffers Buffers

Figure 6: NetFPGA Frequency Scaled Router packet path.

The router pipeline is shown in Figure 6. The incoming packets from the networks (via the PHY

and MAC chips) and the host CPU are first received by the MAC Rx and CPU Rx in the Receive

Queues, respectively. The packets are then collected by the Input Arbiter via a round-robin

algorithm and pushed into the Output Port Lookup module. At this stage, the packets are processed

by a number of router operations, including MAC address verification, TTL update, IP lookup and

ARP lookup etc. After that, the packets are buffered in the SRAM to be read by the Output Queues.

Finally, the Transmit Queues read the packets from the Output Queues and send them out through

the MAC Tx (CPU Tx).

The Virtex-II Pro FPGA is the core logic, which is programmed in Verilog-HDL hardware

programming language, and realizes the functionality of the router hardware, including the storing

Page 21 of 36

 FP7-ICT-258454 D4.3

and forwarding of the arriving network packets. In order to avoid a board reset with packet losses

we have changed the hardware so that the SRAM remains at full frequency operation (125 MHz),

and instead we designed the board to only change the operational frequency of the core logic

Virtex-II Pro FPGA. In order to interface the board components, which now operate at two different

frequencies, we introduced asynchronous buffers to buffer packets between the different clock

zones. A custom register allows the software running on the NetFPGA host desktop PC to

communicate with the NetFPGA hardware, and scale the core logic frequency between the five

different frequencies:set1 (125MHz, 83.3MHz, 62.5MHz, 50MHz, 41.7MHz) or set2 (125MHz,

62.5MHz, 31.3MHz, 15.6MHz, 7.8MHz). The DCM (Digital Clock Manager) in the VIRTEX-II

PRO FPGA can generate 16 different frequencies; however, the resources available on the FPGA

can only implement 5 frequencies at the same time. In the GAL module that follows frequency set1

was used.

A.2. NetFPGA-based GAL Module

The Green Standard Interface (GSI) is the northbound interface of the generic Green Abstraction

Layer instantiation and it is expected to be used by three main sets of control plane processes

including Local Control Policies (LCP), network-wide control policies (NCPs), and Monitoring and

Operation Administration & Management (OAM). The GAL has been defined in order to provide

(i) a common and simple way for representing power management capabilities available in

heterogeneous data plane hardware,

(ii) a framework for information exchange between power managed data plane entities and

control processes, and

(iii) a reference control chain allowing a consistent hierarchical organization or multiple local

and network-wide energy management protocols.

The Green Standard Interface (GSI) is in charge of providing the command set necessary to setup

the power management and monitoring of a wide set of NetFPGA router energy-aware resources

and devices. In other words, the GSI is used for accessing the NetFPGA router resources and their

power characteristics’ discovery, the autonomic provisioning and manual configuration of

NetFPGA router resources, the monitoring and the decommissioning of NetFPGA router energy-

aware physical resources. The set of messages, their functionalities and workflow of the command

set exposed by the GSI [8] to control processes are in line with the NetFPGA router architecture.

Page 22 of 36

 FP7-ICT-258454 D4.3

Figure 7: The GAL Module for the NetFPGA Frequency Scaled Router.

NetFPGA Router resources manageable through the Green Standard Interface include device

level, Line-card level and Hardware component level [8]. Figure 7 shows the GAL hierarchy for the

NetFPGA Router. Each entity (local and physical) has a set of power states and a current power

state, each characterized by given QoS and power consumption.

There are 7 states for each entity: the states from 0 to 4 represent the 5 different operational

frequencies and their corresponding different levels of QoS (traffic handling capability) and power

consumption; state 0 provides the maximum QoS and has the maximum power consumption (i.e., it

represents the highest frequency of operation, 125MHz), state 4 provides the minimum QoS and has

the minimum power consumption (i.e., it represents the lowest operational frequency, 41.7MHz in

the case of set1 frequencies); state 5 represents the autonomic behaviour state, in which the entity

0.0.0 changes its own power state depending on the local traffic load; and the state 6 is a standby

state, in which the entity is in a sleeping mode. Each power state has the following QoS and power

attributes:

 maximum_packet_throughput, which is the maximum packet throughput that can be

provided by the entity when working in the current state, this value is expressed in packets

per second.

 maximum_bit_throughput, which is the maximum bit throughput that can be provided by

the entity when working in the current state. This value is expressed in bits per second.

 minimum_power_gain, which is the minimum power gain compared with the maximum

power consumption of the entity (state 0) when working in the current state.

 power_gain, which is the average power gain compared with the maximum power

consumption of the entity (state 0) when working in the current state.

Core FPGA

Page 23 of 36

 FP7-ICT-258454 D4.3

 wakeup_time, which is the maximum time required to move from the current state (if the

current state is standby state) to an active state.

 sleeping_time, which is the maximum time required to move from the current state (if the

current state is an active state) to the standby state.

 lpi_transition_power, which is the average power needed to move from the current state to

other states.

 ps_transition_times, which is the maximum time needed to move from the current state to

other states.

 ps_transition_service_interruption_times, which is the maximum service interruption time

that may be incurred while moving from the current state to other states.

 autonomic_ps_steps, which is the power state steps that can be selected when working in

autonomic power scaling state (state 5), there are five power state steps in this NetFPGA

Scaled Router module (125MHz, 83.3MHz, 62.5MHz, 50MHz, 41.7MHz).

 autonomic_ps_curves, which represents the strategy of when and how to change power state

if the current state is set to autonomic power scaling state (state 5).

 autonomic_ps_service_interruption, which is the maximum service interruption time that

may be incurred when switching power states by the autonomic behaviour (state 5).

The specific features of this GAL module include the following points:

 The physical layer is exposed by the GAL with read-only access: a GAL client may be aware

of which entities can be found at the lowest layer but it cannot directly communicate with

them.

 The physical energy-aware elements are: the Xilinx Virtex II Pro FPGA (resource_id: 0.0.0)

with 5 grades of operational frequencies (125MHz, 83.3MHz, 62.5MHz, 50MHz, and

41.7MHz represented by 5 power state steps); and the four 1Gbps Ethernet ports

(resource_ids from 0.0.1 to 0.0.4).

 The logical layer is exposed with read-and-write access: a GAL client is aware of which

logical entities are at the higher layer, and it can send them some commands, in order to

change the power states. (resource_ids from 0.0.5 to 0.0.8).

 Each of the 4 logical entities depends on one real Ethernet port on the board and on the

Xilinx Virtex II Pro FPGA Chip.

 Since the commands can be sent only to the logical resources, the Local Control Policy (LCP)

will interpret these high level states and set the corresponding low level states in the

hardware modules.

The following command set is implemented on the NetFPGA Scaled Router to access and

configure NetFPGA Router resources and their power characteristics:

 DISCOVERY: The Discovery command shows only the properties of the logical resources:

the ID of the resource, the description (which contains the correspondent IP address) and the

Optimal Configuration list.

 PROVISIONING: The Provisioning command sets the state of an entity to the specified

state. The logical resources have 7 states: the states from 0 to 4 represent different levels of

Page 24 of 36

 FP7-ICT-258454 D4.3

operational frequency and resultant different levels of QoS and power consumption, state 5

represents the autonomic behaviour state and state 6 is the standby state.

 MONITOR STATE: The Monitor State command returns the current power state of the

physical and logical entities.

 MONITOR CONSUMPTION: The Monitor Consumption command returns the current

power consumption of the physical and logical entities.

 RELEASE: The Release command sets the state of the resource to the default state. For the

NetFPGA Scaled Router logical resources the default state is the state 0: the highest

operational frequency with the maximum QoS and the maximum power consumption.

 COMMIT and ROLLBACK: The GAL, (in particular the LCP), maintains a sort of

session: information related to the provisioned commands is maintained in memory and is

set to the hardware only when the commit command is sent. If the Rollback command is

sent, the state of the system will be the last committed one.

Page 25 of 36

 FP7-ICT-258454 D4.3

Appendix B: NetFPGA-based GAL Implementation with C/Linux

In this Appendix, we show the source code structure and functionalities of the GAL

implementation (with C/Linux) of the NetFPGA-based dynamic scaled router.

B.1. Source Code Structure

Figures 8 and 9 represent the source code structure and functionalities of a NetFPGA-based

dynamic scaled router GAL implementation with C/Linux. Control processes can acquire, provision

and monitor the state of NetFPGA Router logical resources through the User Interface, by using the

command set mentioned above. The steps are executed as follows:

 each command calls the corresponding functionality from GAL Library;

 the corresponding functionality forwards the request to the NetFPGA RouterModule;

 the NetFPGA Router module calls the corresponding functionality in logical resources if

the command can reach the logical entity;

 the logical resource functionality passes the request to the Local Control Policy (LCP),

otherwise the NetFPGA Router module directly calls the LCP (in case of Commit and

Rollback);

 the corresponding functionality of the LCP interprets the high level states and sets the

correspondent low level states in the hardware modules;

 the hardware modules finally reaches the hardware component by accessing the

corresponding registers of the NetFPGA Router, such as functions of writeReg and

readReg.

An example of the Provisioning command, which is used to configure the power state of the

selected entity, is shown here:

 the control processes sends the Provisioning command to the GAL through the User

Interface with parameters resource_id and power_state;

 the Provisioning command calls the gal_provisioning function from the GAL Library;

 The gal_provisioning function forwards the request to the

gal_module_netfpga_provisioning function in the NetFPGA Router module;

 the gal_module_netfpga_provisioning function calls the

gal_module_netfpga_logical_resource_provisioning function in the NetFPGA Router

logical resource module;

 the gal_module_netfpga_logical_resource_provisioning function in the logical resource

module calls the Local Control Policy to manage the Provisioning of the hardware

modules using the lcp_provisioning function;

 the lcp_provisioning sets the provisioned state of the logical resource entities, and

calculates the provisioning state for the CPU;

 When the Commit command reaches the Local Control Policy, the provisioned state is set

to the committed state and the CPU is set with the committed state by writing to the

Hardware Register.

Page 26 of 36

 FP7-ICT-258454 D4.3

User
Interface

GAL LIB
gal_prvisioning

PROVISIONING

NetFPGA Module
netfpga_prvisioning

Logical Resource
resource_prvisioning

LOGICAL_
DEFAULT_STATE

GAL LIB
gal_release

RELEASE

NetFPGA Module
netfpga_release

Logical Resource
resource_release

Local Control Policy
LCP_prvisioning

Set
Logical_entity_

provisioned_state

Netfpga_
cpu_

provisioning

Set CUP
cup

provisioned
power_state_id

Calculate Parameters
of each available

state for
logical resources

lcp_states_
parameters_calculation

states =
logical_entity_provisione

d_state
Committed

No

states =
logical_entity_committed_

state

Yes

GAL LIB
gal_rollback

ROLLBACK

NetFPGA Module
netfpga_rollback

Local Control Policy
LCP_rollback

NOT_COMMITTED

 COMMITTED
NOT_COMMITTED

logical_entity_provisioned_state =
logical_entity_committed_state

GAL LIB
gal_commit

COMMIT

NetFPGA Module
netfpga_commit

Local Control Policy
LCP_commit

logical_entity_committed_state =
logical_entity_provisioned_state

Netfpga_
cpu_

commit
NOT_COMMITTED

 COMMITTED

autonomic

Yes

activate_
autonomic
_behavior

governor_
function

set_cpu_state

writeReg()
Hardware Register

Control Plane

Hardware
Date Plane

cpu_committed_power_state_id =
cpu_provisioned_power_state_id

readReg()
Hardware Register

Figure 8: Source code structure and functionalities of the GAL module for NetFPGA Router.

Page 27 of 36

 FP7-ICT-258454 D4.3

User
Interface

GAL LIB
gal_discovery

DISCOVERY

NetFPGA Module
netfpga_discovery

Logical Resource
resource_discovery

GAL LIB
gal_monitor_state

MONITOR STATE

NetFPGA Module
netfpga_monitor_state

Logical Resource
resource_monitor_state

writeReg()
Hardware Register

Control Plane

Hardware
Date Plane readReg()

Hardware Register

Child ?
No/root 0

Netfpga_read_
physical_resources

Netfpga_read_
logical_resources

Yes/leaf 0.0.5

Set resource ID
and description

Append to logical
resources list netfpga_port_monitor_

state

Append CPU to
physical resources list

Append Ethernet Ports to
physical resources list

committed

States Parameters
initialization

States =
logical_committed_

power_states_parameters

States =
logical_provisioned_

power_states_parameters

Yes No Local Control Policy
lcp_monitor_state

Return
logical_entity_
committed_state

GAL LIB
gal_monitor_consumption

MONITOR CONSUMPTION

NetFPGA Module
netfpga_monitor_consumption

Logical Resource
resource_monitor_consumption

 Local Control Policy
lcp_monitor_consumption

Return
consumption

LCP
lcp_init

Netfpga_cpu_monitor_
state

Figure 9: Source code structure and functionalities of the GAL module for the NetFPGA Scaled Router.

Before using any module, the GAL library is initialized. During the initialization, all available

modules are queried. All modules that return TRUE during the initialization phase will be available

for further use. The function gal_init initializes the GAL library. The syntax of the gal_init function

is the following:

int gal_init(char *none);

IN none Currently not used, just to keep compatibility with other.

return GAL_SUCCESS If it was possible to get the power state.

return GAL_ERROR If an error occurred trying to get the power state.

gal_module_netfpga_init is the module initialization function. This function is called before

calling any other function in the module. Module developers should include in this function any

Page 28 of 36

 FP7-ICT-258454 D4.3

action that should be performed before using the module. The syntax of gal_module_netfpga_init is

the following:

int gal_module_netfpga_init(char *id);

IN id The module's resource_id.

return GAL_SUCCESS If the operation completed successfully.

return GAL_ERROR If an unspecifed error occurred.

gal_module_netfpga_logical_resource_init is the module initialization function. The syntax of

the gal_module_netfpga_logical_resource_init is the following:

int gal_module_netfpga_logical_resource_init(int index, char *id);

IN id The module's resource_id.

return GAL_SUCCESS If the operation completed successfully.

return GAL_ERROR If an unspecifed error occurred.

lcp_init initializes the Local Control Policy Module. The syntax of lcp_init is the following:

int lcp_init();

return GAL_SUCCESS If everything went well.

return GAL_ERROR If something went wrong.

The Green Standard Interface command set is realized through the corresponding functions and

input and output parameters. Each GSI entity and the related syntax can refer to D4.2 [8] and D4.1

Error! Reference source not found.. However, the latest changes to the API are missing from this

mplementation, for example GAL_Monitor_Sensor and GAL_Monitor_History. The doxy-gen

documentation of the example and GAL source codes can be downloaded from the ECONET

website, D4.4 [19].

B.2. Parameters and Data Structure

The Green Standard interface of the GAL is controlled through the following list of input and

output parameters:

 resource_id is an input parameter that represents the unique resource identifier

(STRING[32]) of the entity to be managed. It allows managing devices with different

granularity both at infrastructure and component level (Network, Device, Interface and

logical resources). The naming rule of the resource_id input parameter is defined as follows:

each instance of the GAL starts with a root local resource identification (0). Going deeply

into this instance, physical resources should be named in sequence: 0.0.0 (Core FPGA),

0.0.1 -0.0.4 (Ethernet port [0-3]). Logical resources, which are the combination of the

Ethernet ports and the Core FPGA, are named as: 0.0.5, 0.0.6, 0.0.7, 0.0.8.

 committed is an input parameter that represents a Boolean value that indicates if the caller

is asking for the committed state (the current state of the hardware) or the provisioned state

(the state that has been provisioned, but not committed yet).

 logical_resources is an output structure that represents the list of available logical resources

after a discovery operation. The data structure for the logical_resources set is the following:

logical_resources <resource_id, description, depends_on, length>, where:

 resource_id is a STRING[32] containing the unique resource identifier;

Page 29 of 36

 FP7-ICT-258454 D4.3

 description is a STRING[32] containing the description of the logical resource;

 “depends_on” is a [list of] resource_id;

 length is a quick reference to the number of items in the list.

 physical_resources is an output structure that represents the list of available physical

resources after a discovery operation. The data structure for the physical_resources set is as

follows:

physical_resources <resource_id, description, used_by, depends_on, has_children>, where:

 resource_id is a STRING[32] containing the unique resource identifier;

 description is a STRING[32] containing the description of the logical resource;

 “used_by” is a [list of] resource_id , containing identifiers connected to the physical

resources through the “user” relationship;

 “depends_on” is a [list of] resource_id, containing identifiers connected to the

physical resources through the “depending” relationship;

 ‘has_children’ is an integer (UINT16) containing the number of children of the

physical resource selected.

The physical_resources could be NULL if the internal architecture of the device is unknown.

 power_state is an output parameter that represents the energy aware state (UINT16) of the

selected entity (per element in the list of the child resource_id).

 power consumption is an output parameter that represents the power consumption of the

device expressed in mW.

 entity dependency list (EDL). EDL is an output structure implemented as an ordered array

of lists, containing a set of “suggested moves” to obtain significant energy saving. The data

structure for the EDL is a list of suggested configurations composed by <resource_id, EAS>.

The EDL structure provides a list of optimal configurations. This list is organized by

decreasing values of power gains. If some devices cannot suggest an optimal configuration,

the EDL could be null.

The GAL module defined the following list of data structures:

 curve_step_t is the curve step structure for autonomic power scaling profile curves, and has

the following data fields:

Type Variable

short int offered_load

short int maximum_consumpion

double maximum_packet_service_time

 gal_list_item_t is the structure of theGAL module list items and base type for items that are

put in list containers. The data fields are as follows:

Type Variable Description

struct gal_list_item_t * module_next pointer to next list item

struct gal_list_item_t * module_prev pointer to previous list item

Page 30 of 36

 FP7-ICT-258454 D4.3

 gal_list_t is the structure of a list and base type for list containers, and has the following

data fields:

Type Variable Description

gal_list_item_t sentinel head and tail item of the list

volatile size_t length quick reference to the number of items in the list

 gal_module_1_0_0_t is the GAL module structure. It allows modules to be a part of the

GAL, and any GAL module should implement these functions. The data fields are as

follows:

Type Variable Description

gal_list_item_t * module_next Pointer to the next module

gal_list_item_t * module_prev Pointer to the previous module

gal_list_t modules list of open modules/components

char [GAL_MAX_MODULE_NAME] name module name

char [GAL_MAX_RESOURCE_ID] id resource id

int verbose_level verbose level for this module

gal_module_init_fn_t init initialization function

gal_module_finalize_fn_t finalize finalization function

gal_discovery_fn_t discovery discovery function

gal_provisioning_fn_t provisioning provisioning function

gal_release_fn_t release release function

gal_monitor_state_fn_t monitor_state monitor_state function

gal_commit_fn_t commit commit function

gal_rollback_fn_t rollback rollback function

 globals_t is the global variable which holds the global options. The data fields are

Type Variable

int servers_num

server_t [GAL_MODULE_VIRTUAL_MAX_SERVERS] server

int verbose

int verbose_level



Page 31 of 36

 FP7-ICT-258454 D4.3

 server_t is the structure to hold all the server variables. The data fields are as follows:

Type Variable

int verbose_level

int status

char * address

int port

char * port_str

int connection

gal_module_t * submodule

 logical_resource_item_t is the structure of logical resource items. The data fields are:

Type Variable

gal_list_item_t * module_next

gal_list_item_t * module_prev

char [32] resource_id

char [32] description

gal_list_t depends_on

 logical_resource_list_t is the logical resources list structure. The data fields are as follows:

Type Variable

gal_list_ t resources

 nf2device is the structure to represent an nf2 device to a user mode programs. The data

fields are as follows:

Type Variable

char * device_name

int fd

int net_iface

 nf2reg is the structure for transferring register data via an I/O interface. The data fields are

as follows:

Type Variable

unsigned int reg

unsigned int val

 optimal_config_t is the optimal configuration structure. The data fields are as follows:

Type Variable

char * resource_ids

state_t * power_states

Page 32 of 36

 FP7-ICT-258454 D4.3

 physical_resource_item_t is the structure of physical resource items. The data fields are as

follows:

Type Variable

gal_list_item_t * module_next

gal_list_item_t * module_prev

char [32] resource_id

char [32] description

resources_id_list_item_t * used_by

resources_id_list_item_t * depends_on

int num_children

 physical_resource_list_t is the physical resources list structure. The data fields are as

follows:

Type Variable

gal_list_ t resources

 resources_id_list_item_t is the resources ID List structure. The data fields are as follows:

Type Variable

struct resources_id_list_item_t * resource_id_next

struct resources_id_list_item_t * resource_id_prev

Page 33 of 36

 FP7-ICT-258454 D4.3

 state_t is the state structure. The data fields are as follows:

Type Variable Description
Mandatory

/Optional

short int id ID of the state M

short int minimum_power_gain

The minimum power gain compared with

the maximum power consumption of the

entity

M

double maximum_packet_throughput
The maximum throughput (packets per

second) provided by the entity
M

double maximum_bit_throughput
The maximum throughput (bits per second)

provided by the entity
M

short int power_gain The average power gain O

double wakeup_time
The maximum time (seconds) that is

needed to wake-up from idle mode
O

double sleeping_time
The maximum time (seconds) that is

needed to enter idle mode
O

short int lpi_transition_power

The average power needed during

transitions from idle mode to active modes

and vice versa
O

short int autonomic_ps_steps

Granularity used for describing the power

and performance profile in autonomic

power scaling scheme

O

curve_step_t

*
autonomic_ps_curves

Pointer to curve_step_t which is the curve

step structure for autonomic power scaling

profile curves

O

double autonomic_ps_service_interruption

The maximum service interruption time

(seconds) that may be incurred when the

autonomic scheme switches the entity’s

capacity

O

double * ps_transition_times
The maximum time (seconds) cost when

switching among active modes
O

double * ps_transition_service_interruption_times

The maximum service interruption time

(seconds) that may be incurred while

switching among active modes

O

long long int wakeup_triggers
The set of flags that represents which

triggers can be used to wake-up the entity
O

Page 34 of 36

 FP7-ICT-258454 D4.3

Appendix C: The implementation of the GAL module for the
DROP router

In addition to the implementation of the NetFPGA-based GAL module, the GAL interface has

been implemented within the DROP router. The implementation for this Drop router GAL module

was based on the original NetFPGA module in the first phase of design, but in a second phase has

been re-implemented from scratch to fit the different software architecture of the DROP router.

The GAL module of the DROP router consists of a set of C++ classes. Some of these classes

represent the GAL structures (logical, physical, and sensor resources, and EASes) and one pure

virtual class is used to represent the GSI. The GAL-related components of the DROP router

communicate among each other by implementing the methods of this class. There is no one unique

implementation of the GSI because the several components could be local to the same operating

system process or belong to different processes, even running on different PCs, so they require

different mechanisms for the actual communications (direct function call, event-based

communication, RPC, etc.). The GSI class relies on return code parameters for error checking

instead of C++ exceptions, so it is possible to interface it with C code.

The remaining classes are the different implementations of the various LCPs and some utility

classes used for power management.

The resulting GAL implementation on the DROP router is modular and highly extensible due to

its object-oriented design and the usage of several well-known design patterns. Several components

are implemented in separated libraries and a mechanism of dynamic loading permits the loading of

different implementations at system start-up by changing some parameters in the configuration

files. This is useful in order to present different behaviours.

The above characteristics make this second GAL implementation another interesting example that

can be used as starting point for producing new GAL modules for different and more complex

devices.

The source code of the GAL module for the DROP router is available to the public under the

BSD license on the ECONET website, by means of Subversion (SVN) software revisioning system

accessible at the following URL: https://svn.econet-project.eu/repos/drop/trunk.

The software in the SVN repository has been constantly maintained and updated during the full

duration of the ECONET project.

Page 35 of 36

 FP7-ICT-258454 D4.3

References

[1] S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy, and D. Wetherall, “Reducing

network energy consumption via sleeping and rate adaptation,” in Proceedings of the 5th

USENIX Symposium on Networked Systems Design and Implementation, pp. 323–336,

2008.

[2] R. Bolla, R. Bruschi, F. Davoli, and F. Cucchietti, “Energy efficiency in the future internet:

A survey of existing approaches and trends in energy-aware fixed network infrastructures,”

IEEE Communications Surveys & Tutorials, vol. 13, no. 2, pp. 223–244, 2011.

[3] Cisco EnergyWise, http://www.cisco.com/. 2009.

[4] A. Cianfrani, V. Eramo, M. Listanti, and M. Polverini, “An OSPF enhancement for energy

saving in IP networks”, in Proceedings of the 2011 IEEE Conference on Computer

Communications, pp. 325-330, 2011.

[5] J. C. C. Restrepo, C. G. Gruber, and C. M. Machuca, “Energy profile aware routing”, in

Proceedings of the 2009 IEEE International Conference on Communications, pp. 1-5,

2009.

[6] R. Bolla, F. Davoli, R. Bruschi, K. Christensen, F. Cucchietti, and S. Singh, “The potential

impact of green technologies in next-generation wireline networks: Is there room for

energy saving optimization?,” IEEE Communications Magazine, vol. 49, no. 8, pp. 80-86,

2011.

[7] R. Bolla, R. Bruschi, A. Carrega, F. Davoli, D. Suino, C. Vassilakis, and A. Zafeiropoulos,

“Cutting the energy bills of Internet service providers and telecoms through power

management: An impact analysis,” Computer Networks, vol. 56, no. 10, pp. 2320-2342,

2012.

[8] The ECONET project, “Definition of Internal Standard interfaces”, Deliverable 4.2

(http://econet-projet.eu).

[9] The ECONET project, “Definition of Energy-Aware States”, Deliverable 4.1

(http://econet-projet.eu).

[10] R. Bolla, R. Bruschi, F. Davoli, P. Donadio, L. Fialho, M. Collier, A. Lombardo, D.

Reforgiato, V. Riccobene, T. Szemethy "A northbound interface for power management in

next generation network devices" IEEE Communications Magazine, vol. 52, no. 1, 149-

157, 2014

[11] R. Bolla, R. Bruschi, F. Davoli, P. Donadio, L. Fialho, M. Collier, A. Lombardo, D.

Reforgiato, V. Riccobene, T Szemethy, "Exposing energy-aware capabilities in next

generation network devices" Proc. IEEE ICC 2013 Workshop Telecom R2S - Second

IEEE Workshop on Telecommunication Standards: From Research to Standards, Budapest,

Hungary, IEEE, pp. 1286-1290, June 2013

[12] R. Bolla, R. Bruschi, F. Davoli, L. Di Gregorio, P. Donadio, L. Fialho, M. Collier, A.

Lombardo, D. Reforgiato, T. Szemethy "The Green Abstraction Layer: A Standard Power

Management Interface for Next-Generation Network Device" IEEE Internet Computing,

vol. 17, no. 2, IEEE, pp. 82-86, 2013

[13] D. Reforgiato, A. Lombardo, F. Davoli, L. Fialho, M. Collier, P. Donadio, R. Bolla, R.

Bruschi, "Exporting Data-Plane Energy-Aware Capabilities from Network Devices toward

Page 36 of 36

 FP7-ICT-258454 D4.3

the Control Plane: The Green Abstraction Layer" 17th European Conf. on Network and

Optical Communications (NOC 2012), IEEE, June 2012, Vilanova i la Geltru, Spain

(Invited Paper)

[14] NetFPGA Technical Specifications, http://netfpga.org/1G_specs.html.

[15] F. Guo, O. Ormond, M. Collier, X. Wang, “Power measurement of NetFPGA based

router”, IEEE GreenCom’12, Sept 2012

[16] F. Guo, O. Ormond, L. Fialho, M. Collier, X. Wang, “Power consumption ayalysis of a

NetFPGA based router”, Journal of China Universities of Posts and Telecommunications,

Vol.19 suppl. 1, Jun 2012, pp.94-99.

[17] The ECONET project, “Definition of Internal Standard interfaces”, Deliverable 4.2

(http://econet-projet.eu).

[18] The ECONET project, “Definition of Energy-Aware States”, Deliverable 4.1

(http://econet-projet.eu).

[19] The ECONET project NetFPGA-GAL Documentation, Deliverable 4.4

(https://www.econet-project.eu/Repository/Documents)

[20] The ECONET project, “Definition of Internal Standard interfaces”, Deliverable 6.4

(http://econet-projet.eu).

https://www.econet-project.eu/Repository/Documents

	Disclaimer
	Copyright
	Table of Contents
	1. Executive Summary
	2. Introduction
	3. Definition of GAL
	3.1. GAL Module
	3.2. Definition of EAS at the Data-Plane
	3.3. Standard Interfaces toward the Control-Plane

	4. Implementation of the GAL Module
	4.1. GAL Workflow
	4.2. GAL API
	4.3. GAL Namespace
	4.4. GAL State Space

	5. Conclusions
	Appendix A: NetFPGA-based GAL module
	A.1. NetFPGA Platform
	A.2. NetFPGA-based GAL Module

	Appendix B: NetFPGA-based GAL Implementation with C/Linux
	B.1. Source Code Structure
	B.2. Parameters and Data Structure

	Appendix C: The implementation of the GAL module for the DROP router
	References

