
OpenFlow in the Small

Raffaele Bolla

CNIT – ResearchUnit of the University of Genoa

DITEN – University of Genoa

Genoa, Italy

Chiara Lombardo

CNIT – ResearchUnit of the University of Genoa

DITEN – University of Genoa

Genoa, Italy

Roberto Bruschi

CNIT – ResearchUnit of the University of Genoa

Genoa, Italy

Fabio Podda

DITEN – University of Genoa

Genoa, Italy

Abstract— Multi-core processors optimized for networking

applications typically combine general-purpose cores with off-

load engines to relieve processor cores of specialized packet

processing tasks such as parsing, classification, and security.

Unfortunately, modern embedded operating systems still lack of

an effective and advanced support and hardware abstraction for

optimally exploiting the above mentioned aspects. Starting from

these considerations, this paper proposes a novel framework,

“OpenFlow in the Small” (OFiS), specifically designed to provide

a flexible hardware abstraction for a huge set of heterogeneous

multi-core processors with advanced network off-load

capabilities. The OFiS framework allows SW

services/applications, or even only the operating system,

activating and customizing off-load operations and their

distribution to processor cores on a per-flow basis.

Keywords— OpenFlow, Network Programmability, Network

Processors.

I. INTRODUCTION

The evolution of network and networked device
architectures (i.e., from routers to mobile phones and customer
premises equipment) are two of the most important aspects of
the Internet as we know it today, since they directly reflect the
main open issues and the needs of current and upcoming
network technologies and services. Network devices are
becoming smarter and even more complex, in order to support
new generation services/applications that often rely on a strong
integration between network infrastructures and data-centers.

In the last years many ICT manufactures have evolved their
device architectures (from routers, to mobile phones and
customer premises equipment) by massively including
sophisticated multi-core processors able to run embedded
operating systems [1][2]. This choice was certainly driven by
the need to avoid the increase of their internal clock or
computational capacity, as suggested by Moore’s law [3]. The
resulting architectures consist of a complex mixture of flexible
SW-based commodities and efficient HW-based off-loading
functionalities.

Achieving high processing efficiency while providing full
control over the traffic flow with minimal intervention from
processor cores, however, calls for careful coordination among
the various engines. In fact, on the contrary of non-

programmable devices (e.g., based on ASICs) where
performance levels are fixed and depending only on the HW
design, the efficiency level of these platforms heavily relies on
how effectively SW services exploit the underlying HW, and
especially the parallelism between cores and HW off-loading
functionalities.

Modern embedded operating systems (e.g., Linux) certainly
guarantee a good abstraction of the underlying HW, and a
friendly programming environment that might fasten new
service development, as shown in [4], but most of the
enhancements currently available on such OSs are not much
effective when they have to cope with data received by high
speed network interfaces. In fact, as already discussed in [5]-
[8], when the cores receive or transmit packets from/to a same
network interface, the performance level of the system
dramatically decays.

Moreover, HW off-load APIs are often proprietary and,
even if providing similar functionalities, may differ a lot
according to the chip manufacturer. In order to improve the
HW off-loading capabilities of multi-core systems, a standard
communication layer would be needed. It should be flexible
enough to provide some basic capabilities to a very wide set of
devices, but also able to be extended and improved in presence
of a more sophisticated hardware underneath.

Starting from these considerations, this paper proposes a
novel framework, “OpenFlow in the Small” (OFiS),
specifically designed to provide a flexible hardware abstraction
for a huge set of heterogeneous multi-core processors with
advanced network off-load capabilities. The OFiS framework
allows SW services/applications, or even only the operating
system, activating and customizing off-load operations and
their distribution to processor cores on a per-flow basis.

This approach not only provides a simple high-level
platform-independent interface to SW developers, but it also
gives the chance of optimally exploiting the HW parallelisms,
and of differentiating the operations on incoming traffic flows
in order to better meet the application-specific requirements
and the overall Quality of Service (QoS) level.

The name of the proposed framework is due to the core
structure of its interface towards SW services and applications,

which is structured in a similar way with respect to the
OpenFlow protocol [9]: a template for identifying the packets
of a flow, and a list of operations to be performed on all the
packets matching the template. However, differently from
OpenFlow, OFiS is devoted to manage traffic flows in a same
complex chip (in the small).

The rest of the paper is organized as follows. Section II
introduces some of the common issues in multi-core
architectures, while the description of our framework can be
found in Section III. Results are in Section IV, and conclusions
in Section V.

II. MAIN ISSUES ON PARALLEL PROCESSORS/CORES

From a general point of view, typical performance issues,
which may sap parallelization gain, are raised when tasks on
different cores share some data, or when the execution of a
same task is migrated to another core. These lead to two well-
known performance issues, namely data coherence and
concurrency on shared data, which both introduce costly
overhead in accessing and in processing shared data.

Data coherence issues arise from the hierarchical structures
of memories of modern processors, which exhibit various
levels of caches for quickly accessing frequently used data with
low latencies. Depending on the processor, some of these
levels are shared among cores, others unshared.

Shared data can be kept in only one processor's cache at a
time, otherwise the core cache may drift out of synchronization
(i.e., some cores may work on data that is not up-to-date).
Consequently, whenever a core loads shared data to its local
cache, all of the other processors caching it must invalidate
their cache copies. Thus, this invalidation is very costly, since
shared data can only be cached by one core at a time, but also,
it forces the data to be loaded from the RAM or the higher level
caches every time the processing core changes. This obviously
introduces a non-negligible memory accessing overhead.

Both concurrency and data coherence are usually assisted
by the operating system through serialization primitives (e.g.,
semaphores, locks, etc.) and suitable policies for task
scheduling, respectively. If, on one hand, the above topics are
well addressed by modern operating systems in a typical
situation, they are still a big concern for HW/SW designers
when tasks execution heavily relies on data received by high
speed I/O hardware, and especially by network interfaces.

The idea of our framework starts exactly from these
concerns: improving CPU off-loading while keeping a high
flexibility level, so that our proposal would still confirm the
versatility needed to apply to different architectures and, at the
same time, follow future Internet evolutions. With this respect,
our main purpose regards the introduction of mechanisms to
optimize the internal processing of multi-core network
processors, in particular to reduce the amount of complex
operations that CPUs have to perform. A forwarding engine
with such characteristics would combine the flexibility typical
of open platforms to the off-loading needed to support more
specific capabilities.

III. OPENFLOW IN THE SMALL

The OFiS framework has been specifically designed to
provide a flexible hardware abstraction for a huge set of
heterogeneous multi-core processors with advance network off-
load capabilities. This approach not only provides a simple
high-level platform-independent interface to SW developers,
but it also gives the chance to optimally exploit the HW
parallelism, and to differentiate the operations on incoming
traffic flows in order to better meet the application-specific
requirements and the overall Quality of Service (QoS) level.

The main factor that makes OFiS particularly interesting is
its ease of implementation: the framework described in the
following is basic enough to deal with different HW
architectures, but it can be easily extended in presence of more
evolved HW enhancements to provide a more enriched
implementation.

Moreover, as it will be extensively shown in Section IV,
OFiS provides an extremely valid support to increase the
performance level obtained through a fine-grained CPU
specialization and off-loading.

A. Framework Description

The name OpenFlow in the Small wants to attest that the
base principles are the same used in OpenFlow, but the main
structure has been adapted to cope with systems with
heterogeneous capabilities that can be available in different
network/packet processors.

OFiS allows classifying incoming traffic into flows, and
associating specific actions to them. In detail, incoming traffic
is classified by means of a flow table. The flow table is
composed by a number of entries � = 1, … , � with	� ≤ �	
� .
The generic i-th entry is a triple, composed by:

• a flow descriptor fi,

• a set of off-loading actions �

�
 with � = 1,… , �
,

• a single redirection action Ri.

Note that if � = 0	the flow table is empty and if �
 = 0 there
are no off-loading actions associated to the i-th flow.

Our flow descriptor fi is a data structure coincident to the
OpenFlow definition [10], which contains a pre-defined set of
fields from packet headers at multiple layers (from layer 2 to
4). A variable-sized mask is associated to each descriptor field
to provide a more aggregated flow representation.

The actions to be performed on classified packets are

organized into two main typologies: off-loading actions �

�
 and

redirection ones Ri. Both �

�

 and Ri are expressed by a

numerical code specifying the type of operation to be
performed, and a list of input parameters as needed. The type
of action defines the number and the format of input
parameters needed. When actions are stored in the flow table,
the numerical code of the action type is followed by the
parameters.

The presence of a single redirection action is mandatory on
each entry, since it provides information on where classified
packets have to be sent. Off-loading actions are optional, and
one or more of them can be associated to the generic i-th flow.

As discussed in more detail in Section III.B, in our current
implementation off-loading actions correspond to the
modification of one or more fields on the packet headers, but
they can also include the insertion of a pre-padding to provide
some information in advance, for example on the protocol, to
the central cores, hence reducing the amount of operations they
have to perform.

B. The Flow Actions

A wide set of actions to be applied to the classified flows
can be defined and implemented. However, their feasibility
strictly depends on the underlying architecture where OFiS is
applied. In fact, because of HW limitations, some capabilities
may not be supported on different devices. For this reason,
when the operating system tries to add a new action to the flow
table, OFiS has to check whether it is supported and, otherwise,
returns an error message.

As previously sketched, actions can be divided into two
categories: redirection and off-loading. The first category
includes discarding packets and packet redirection to a CPU or
a subset of CPUs. The second one includes changing a field in
the packet header, and can involve any header field at any
level.

The following list provides an example of a simple, yet
effective, set of actions that we have already made available in
our prototype implementation:

• Redirection type 1: discard the packet;

• Redirection type 2: forward packet to a subset of
CPUs;

• Redirection type 3: forward packet directly to a
network interface;

• Off-loading type 1: in IP header, modify source IP,
destination IP, ToS or TTL, respectively;

• Off-loading type 2: in TCP header, modify source or
destination port, respectively;

• Off-loading type 3: in UDP header, modify source or
destination port, respectively;

• Off-loading type 4: Add or remove a VLAN tag.

Many other action types can be obviously defined. In our
implementation, the action choice has fallen on the
manipulation of those fields that particularly suit our purposes:
varying IP addresses and TCP/UDP ports, for example, we can
perform NAT without Netfilter support, as will be shown in
Section IV.C, hence remove some overhead from the CPUs.
Redirection to a subset of CPUs guarantees the efficient
exploitation of CPUs specialized in processing different traffic
flows. Finally, it is important to remind that changing a field in
the header implies the need for checksum recalculation,
otherwise a packet could be considered invalid.

C. The OFiS Fast-Path Procedure

When a packet incomes, a number of fields, corresponding
to the ones specified in the flow descriptor data structure, are
extracted from its headers (the “parsing” operation with
reference to Figure 1).

Then, the parsed fields must be used as a classification key
to find the matching fi descriptor, if any. If multiple matching
descriptors are present, the first one is selected. If no
descriptors are matching, a default redirection is applied (e.g.,
redirect to CPU 0). Upon a matching fi descriptor selection, all

off-loading actions	�

�
 associated to fi are sequentially applied

to the packet. After all off-loading operations have been
applied, the packet redirection Ri is finally performed.

D. Managing Flow Entries

The procedure to add or remove entries from the OFiS flow
table is very simple, as the entire framework is driven by the
local system (and not by a remote controller as in OpenFlow).
In more detail, all the flow table modifications can be triggered
by the SW running on the main processor.

For instance, the procedure used for adding a new flow
entry is depicted in Figure 2. First, the module controls if there
is enough room to add a new flow to the flow table. Then, all
off-loading and redirection actions are examined to determine
if they are supported by the underlying HW. If all these sanity
checks succeed, the flow table is updated, and the engines start
using the new configuration. Otherwise, the configuration
request is aborted and an error message is reported to the user-
space processes.

IV. PERFORMANCE EVALUATION

Test results reported in this section have been collected in
order to evaluate the overall performance of OFiS with respect
to a reference scenario in which no such enhancements are
introduced. Our aim is to show how OFiS allows improving
traffic classification and redirection, and communication
between the HW and the operating system. These aspects are
crucial for optimally exploiting parallelization in multi-core
processors. Moreover, as described in Section III, OFiS has the
clear advantage of easily adapting to any underlying
architecture, while HW off-load APIs are often proprietary and,
even if providing similar functionalities, may differ much
according to the chip manufacturer.

Figure 1. The OFiS fast path procedure.

With these aspects in mind, we decided to focus our tests
on the actions of redirection and off-loading. At this aim, we
performed a first set of measurements on a scenario in which
both IP and UDP traffic income in our network processor, to
show how redirection can improve the overall performance.
Then, in the second test, NAT is performed on incoming IP
traffic using Netfilter and then OFiS, in order to compare the
impact of the two methods on the system.

Both tests have been performed on the architecture
presented in the next subsection. An Ixia Router Tester [11]
has been used to generate traffic. The packet size is fixed to 64
Bytes, while offered loads are reported in each test.

A. Benchmarking Scenario

The reference HW architecture we adopted is the XLP832
[12]: a MIPS64-Release II processor with 8 EC4400 cores.
Regarding the issues in parallel processors described in Section
II, parallelization on the XLP is possible mainly because of the
enhancements provided by the 2.6 Linux kernels, in particular
thanks to the Symmetric Multi-Processor (SMP) support. For
what concerns data coherency, CPU specialization obtained
through the capacity of binding a process to a specific CPU
(CPU affinity) can definitely reduce memory access, since the
same information is likely to be exploited for multiple packets
with the same characteristics (source, protocol, etc.), and can
also reduce the number of CPUs trying to get the same data.

The main characteristic of the XLP technology is
represented by the presence of specific hardware devoted to
off-load operations usually managed by the CPU cores, called
acceleration engines. Among them, the Network Acceleration
Engine (NAE) is responsible for providing a huge part of the
traffic management: in fact, incoming traffic is first processed
by this engine, and is then directed to the CPUs only if further
processing is needed, otherwise the CPUs are completely
bypassed. Most of this process is performed by a set of micro-
core engines, which are highly-programmable MIPS64
processors with access to a shared data RAM and a Content
Addressable Memory (CAM).

In our implementation, the firmware of the micro-core
engines has been developed in order to perform the operations
in Figure 1, and to maintain a local version of the flow table.
The flow table can be easily modified using a command-line
application. To achieve maximum lookup speed, the CAM is
used only for storing the flow descriptors, while the
corresponding off-loading and redirection actions are in a local
RAM.

For what concerns the management of the flow table
entries, a Linux kernel module was designed to receive
commands from user-space processes, to interpret them and to
check their feasibility. If all these procedures succeed, the
module finally applies the changes to the off-loading hardware
by updating the flow table.

B. Redirection: UDP Test

In order to show the performance we can obtain by the
OFiS adoption with respect to redirection actions, we represent
a situation in which an application has to process specific
traffic.

We consider a user-level UDP server that performs
forwarding of UDP traffic at application layer. The traffic
received by this UDP server has to be forwarded to another
host. Of course, IP traffic is also processed and sent to the outer
port.

In detail, in order to exploit OFiS potentials, we have bound
the UDP server to a specific CPU and added a flow entry
telling the system to forward UDP traffic to that CPU. To show
the performance improvement obtained through this procedure,
we compared it to a reference scenario in which these
capabilities are not available.

Both scenarios have been tested forwarding the two traffic
flows to the XLP. In detail, the system is receiving an IP flow
incoming at 2.8 Mpkt/s, and a UDP one, whose speed varies
between 14.880 and 74.404 Kpkt/s. Throughput and average
latency of the UDP flow are measured at the varying packet
rates. IP loss is also taken into account.

Figure 3 shows the results obtained on the two scenarios in
terms of UDP traffic throughput. As we can see, in the
reference scenario we experience some loss on UDP traffic
even at the lowest rate. Such loss becomes particularly
effective when the rate overcomes 59.523 Kpkt/s: throughput
was already decaying linearly, but starting from this rate its
deterioration becomes particularly visible and invalidating.

In the scenario with OFiS, instead, throughput does not
decay or just loses a negligible percentage until 44.642 Kpkt/s.
Although, for higher rates, loss becomes more visible,
throughput decay is still lower than in the reference case.

The IP traffic flow transmitted during this test does not
suffer any packet loss in presence of OFiS. In the reference
scenario, instead, packet loss on IP traffic appears when the
rate of UDP overcomes 59.523 Kpkt/s, and reaches 36% at
74.404 Kpkt/s. This result proves again the performance
improvements obtained through redirection.

The same considerations are still valid considering latency
results in Figure 4: we can see that, for all tested UDP rates,

Figure 2. The procedure to add a new flow entry.

average latency is always lower when OFiS is introduced. This
behavior is respected even in presence of loss on UDP traffic:
as throughput falls at 44.642 Kpkt/s, latency starts to increase
in the OFiS scenario but it still grows with a visibly slower
trend with respect to the reference scenario.

These results confirm the effectiveness of OFiS to provide
more than satisfying performance levels increasing what
already obtained with the mere adoption of redirection.

C. Off-Loading: NAT Test

The following test is meant to expose the improvement in
terms of off-loading obtained using OFiS. As previously
mentioned, off-loading is absolutely a keystone towards a full
exploitation of parallel processors. The introduction of our
framework definitely represents a step forward in this direction.

With this respect, we decided to forward IP traffic and
perform source NAT on all incoming packets. In the first test
scenario, we used the most common method to manipulate
traffic under Linux, which implies the use of iptables.

This well-known user-space application is the classic way
to perform firewall operations. However, the filtering
operations performed at kernel level by Netfilter are very
onerous and can heavily increase CPU utilization. OFiS,
instead, does not have such a heavy impact on the system
overall performance, because it needs no intervention from the
Linux kernel.

Results presented in the following show how the system
benefits from OFiS introduction both in terms of network
performance and global allocation of CPUs.

IP traffic has been transmitted to a subset of 8 CPUs at

various percentages of the maximum offered load, which, for 8
CPUs and in absence of operations on the incoming packets,
has been measured to be 1.4 Mpkt/s.

Figures 5 and 6 represent the test results, obtained with
iptables and OFiS. While the throughput obtained with OFiS
reaches the offered load even at its maximum value, the
scenario using iptables is affected by packet loss starting from
50% of the maximum load. As a consequence, the same load is
characterized by an abrupt growth of latency, which instead is
quite constant in the second scenario and presents lower values
with respect to those obtained using iptables on the whole set
of tested traffic loads.

A better understanding of these results can be obtained
taking into account internal measurements performed on the
XLP during packet processing. In detail, in order to provide a
deeper analysis of the two scenarios, profiling has been
performed on the CPUs involved in traffic forwarding. Using
OProfile [13] at this purpose, we are able to effectively
evaluate the CPU utilization of both each SW application and
each single kernel function. Results reported in Figures 7 and 8
show the global time allocation of the CPUs processing traffic
in case iptables or OFiS are used.

Considering Figure 7, representing the iptables scenario,
the first aspect to be noticed is how scheduling and Netfilter are
predominant among all events: throughout all offered loads,
they account for more than 65% of the CPU allocation: we can
state that Netfilter events are the main cause preventing the
CPUs from going idle. For what concerns the other events,
which all together allocate less than 40% of the CPU activity,
we can see that they show a quite constant trend over the
offered load. This is particularly odd considering packet header
elaboration (pkth), which does not follow IP processing (ip).

Moving on to Figure 8, representing CPU utilization when
OFiS is introduced, the absence of Netfilter is definitely the
main difference with respect to the previous results. Scheduling
is now visibly predominant throughout the offered loads,
though its impact is stronger at lowest rates. Moreover, since
throughput always equals the offered load, scheduling
decreases as traffic rises, while traffic processing related events
follow the traffic behavior at all percentages of the offered
load.

V. CONCLUSIONS

In this paper, we introduced a framework to provide a
flexible hardware abstraction for a huge set of heterogeneous
multi-core processors with advanced network off-loading
capabilities. Our framework, called Open Flow in the Small
(OFiS), has been designed with the aim of optimally exploiting
HW parallelism, and of differentiating the operations on
incoming traffic flows in order to better meet the application-
specific requirements and the overall Quality of Service (QoS)
level.

It is common knowledge that concurrency on shared data
and data coherence can heavily challenge any gain introduced
by the adoption of multi-core architectures in network
processors. The proposed framework is particularly suited to
cope with these issues, since it provides an extremely valid
support to increase the performance level obtained through

Figure 3. Throughput of the UDP traffic.

Figure 4. Average latency of the UDP traffic

redirection and off-loading actions. Among its advantages, it is
worth mentioning flexibility: the framework is particularly
easy to implement even on the most general purpose
architectures, but it can also be extended without much effort in
presence of more sophisticated HW.

In order to show the advantages obtained through the
introduction of OFiS, we have presented an example of its
implementation on the XLP processor. Test results stated that
both network and system performance are visibly improved in
presence of our framework.

ACKNOWLEDGMENT

This work was supported by the ECONET integrated
project, funded by the European Commission under the 7th
framework programme, theme ICT call 5, grant agreement no.
258454, and by the GreenNet project, funded by the Italian
Ministry of University and Education under the program FIRB
“Futuro in Ricerca”.

REFERENCES

[1] Vangal, S.; Singh, A.; Howard J.; Dighe, S.; Borkar, N.; Alvandpour, A.

2007. A 5.1GHz 0.34mm2 router for network-on-chip applications.
Proc. of the IEEE Symp. on VLSI Circuits, June 2007, pp. 42–43.

[2] NetLogic MicroSystems. 2011. NetLogic Microsystems Unleashes
Groundbreaking XLP® II, the World’s Most Powerful Multi-Core
Communications Processors with Unparalleled Scalability to 640
NXCPUs™. Press Release, online,
http://www.netlogicmicro.com/News/pr/2011/11-09-07xlpII.asp

[3] Moore, S. K. 2011. Multicore CPUs: Processor Proliferation. In “Top 11
Technologies of the Decade.” IEEE Spectrum, vol. 48, no. 1, pp. 27-43,
Jan. 2011.

[4] Bolla, R. and Bruschi, R., 2007. Linux Software Router: Data Plane
Optimization and Performance Evaluation. Journal of Networks (JNW)
2, 3, Academy Publisher, 6-11.

[5] Dobrescu, M.; Argyraki, K.; Iannaccone, G.; Manesh, M.; Ratnasamy S.
2010. Controlling parallelism in a multicore software router. Proc. of the
ACM CoNext Workshop on Programmable Routers for Extensible
Services of Tomorrow (PRESTO ‘10), Nov. 2010, Philadelphia, NJ,
USA.

[6] Wu, Q.; Joy Mampilly, D.; Wolf, T. 2010. Distributed Runtime Load-
Balancing for Software Routers on Homogeneous Many-Core
Processors. Proc. of the ACM CoNext Workshop on Programmable
Routers for Extensible Services of Tomorrow (PRESTO ‘10), Nov.
2010, Philadelphia, NJ, USA.

[7] Egi, N.; Greenhalgh, A.; Handley, M.; Hoerdt, M.; Huici, F.; Mathy, L.;
Padimitriou, A. 2010. Forwarding Path Architectures for Multicore
Software Routers. Proc. of the ACM CoNext Workshop on
Programmable Routers for Extensible Services of Tomorrow (PRESTO
‘10), Nov. 2010, Philadelphia, NJ, USA.

[8] Bolla, R.; Bruschi, R. 2008. An Effective Forwarding Architecture for
SMP Linux Routers. Proc. Of the 4th Int. Telecom Networking
Workshop on QoS Multiservice IP Networks (QoS-IP 2008), Venice,
Italy, 210-216.

[9] McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson,
L.; Rexford, J.; Shenker, S.; Turner, J. 2008. OpenFlow: enabling
innovation in campus networks. SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 2, pp. 69-74, March 2008.

[10] The OpenFlow Switch Specification, version 1.1.0, URL:
http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf.

[11] The Ixia XM2 router tester, URL:
http://www.ixiacom.com/products/chassis/display?skey=ch_optixia_xm
2.

[12] The Netlogic XLP processor family,
http://www.netlogicmicro.com/Products/MultiCore/index.asp.

[13] Oprofile, http://oprofile.sourceforge.net/news/.

Figure 5. Throughput during NAT test.

Figure 6. Average latency during NAT test.

Figure 7. CPU utilization of 8 CPUs using iptables.

Figure 8. CPU utilization of 8 CPUs using OFiS.

