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Abstract— Multi-core processors optimized for networking 

applications typically combine general-purpose cores with off-

load engines to relieve processor cores of specialized packet 

processing tasks such as parsing, classification, and security. 

Unfortunately, modern embedded operating systems still lack of 

an effective and advanced support and hardware abstraction for 

optimally exploiting the above mentioned aspects. Starting from 

these considerations, this paper proposes a novel framework, 

“OpenFlow in the Small” (OFiS), specifically designed to provide 

a flexible hardware abstraction for a huge set of heterogeneous 

multi-core processors with advanced network off-load 

capabilities. The OFiS framework allows SW 

services/applications, or even only the operating system, 

activating and customizing off-load operations and their 

distribution to processor cores on a per-flow basis.   

Keywords— OpenFlow, Network Programmability, Network 

Processors. 

I.  INTRODUCTION 

The evolution of network and networked device 
architectures (i.e., from routers to mobile phones and customer 
premises equipment) are two of the most important aspects of 
the Internet as we know it today, since they directly reflect the 
main open issues and the needs of current and upcoming 
network technologies and services. Network devices are 
becoming smarter and even more complex, in order to support 
new generation services/applications that often rely on a strong 
integration between network infrastructures and data-centers.  

In the last years many ICT manufactures have evolved their 
device architectures (from routers, to mobile phones and 
customer premises equipment) by massively including 
sophisticated multi-core processors able to run embedded 
operating systems [1][2]. This choice was certainly driven by 
the need to avoid the increase of their internal clock or 
computational capacity, as suggested by Moore’s law [3]. The 
resulting architectures consist of a complex mixture of flexible 
SW-based commodities and efficient HW-based off-loading 
functionalities.  

Achieving high processing efficiency while providing full 
control over the traffic flow with minimal intervention from 
processor cores, however, calls for careful coordination among 
the various engines. In fact, on the contrary of non-

programmable devices (e.g., based on ASICs) where 
performance levels are fixed and depending only on the HW 
design, the efficiency level of these platforms heavily relies on 
how effectively SW services exploit the underlying HW, and 
especially the parallelism between cores and HW off-loading 
functionalities. 

Modern embedded operating systems (e.g., Linux) certainly 
guarantee a good abstraction of the underlying HW, and a 
friendly programming environment that might fasten new 
service development, as shown in [4], but most of the 
enhancements currently available on such OSs are not much 
effective when they have to cope with data received by high 
speed network interfaces. In fact, as already discussed in [5]-
[8], when the cores receive or transmit packets from/to a same 
network interface, the performance level of the system 
dramatically decays.  

Moreover, HW off-load APIs are often proprietary and, 
even if providing similar functionalities, may differ a lot 
according to the chip manufacturer. In order to improve the 
HW off-loading capabilities of multi-core systems, a standard 
communication layer would be needed. It should be flexible 
enough to provide some basic capabilities to a very wide set of 
devices, but also able to be extended and improved in presence 
of a more sophisticated hardware underneath. 

Starting from these considerations, this paper proposes a 
novel framework, “OpenFlow in the Small” (OFiS), 
specifically designed to provide a flexible hardware abstraction 
for a huge set of heterogeneous multi-core processors with 
advanced network off-load capabilities. The OFiS framework 
allows SW services/applications, or even only the operating 
system, activating and customizing off-load operations and 
their distribution to processor cores on a per-flow basis. 

This approach not only provides a simple high-level 
platform-independent interface to SW developers, but it also 
gives the chance of optimally exploiting the HW parallelisms, 
and of differentiating the operations on incoming traffic flows 
in order to better meet the application-specific requirements 
and the overall Quality of Service (QoS) level. 

The name of the proposed framework is due to the core 
structure of its interface towards SW services and applications, 



which is structured in a similar way with respect to the 
OpenFlow protocol [9]: a template for identifying the packets 
of a flow, and a list of operations to be performed on all the 
packets matching the template. However, differently from 
OpenFlow, OFiS is devoted to manage traffic flows in a same 
complex chip (in the small). 

The rest of the paper is organized as follows. Section II 
introduces some of the common issues in multi-core 
architectures, while the description of our framework can be 
found in Section III. Results are in Section IV, and conclusions 
in Section V. 

II. MAIN ISSUES ON PARALLEL PROCESSORS/CORES 

From a general point of view, typical performance issues, 
which may sap parallelization gain, are raised when tasks on 
different cores share some data, or when the execution of a 
same task is migrated to another core. These lead to two well-
known performance issues, namely data coherence and 
concurrency on shared data, which both introduce costly 
overhead in accessing and in processing shared data. 

Data coherence issues arise from the hierarchical structures 
of memories of modern processors, which exhibit various 
levels of caches for quickly accessing frequently used data with 
low latencies. Depending on the processor, some of these 
levels are shared among cores, others unshared. 

Shared data can be kept in only one processor's cache at a 
time, otherwise the core cache may drift out of synchronization 
(i.e., some cores may work on data that is not up-to-date). 
Consequently, whenever a core loads shared data to its local 
cache, all of the other processors caching it must invalidate 
their cache copies. Thus, this invalidation is very costly, since 
shared data can only be cached by one core at a time, but also, 
it forces the data to be loaded from the RAM or the higher level 
caches every time the processing core changes. This obviously 
introduces a non-negligible memory accessing overhead. 

Both concurrency and data coherence are usually assisted 
by the operating system through serialization primitives (e.g., 
semaphores, locks, etc.) and suitable policies for task 
scheduling, respectively. If, on one hand, the above topics are 
well addressed by modern operating systems in a typical 
situation, they are still a big concern for HW/SW designers 
when tasks execution heavily relies on data received by high 
speed I/O hardware, and especially by network interfaces.  

The idea of our framework starts exactly from these 
concerns: improving CPU off-loading while keeping a high 
flexibility level, so that our proposal would still confirm the 
versatility needed to apply to different architectures and, at the 
same time, follow future Internet evolutions. With this respect, 
our main purpose regards the introduction of mechanisms to 
optimize the internal processing of multi-core network 
processors, in particular to reduce the amount of complex 
operations that CPUs have to perform. A forwarding engine 
with such characteristics would combine the flexibility typical 
of open platforms to the off-loading needed to support more 
specific capabilities.  

III. OPENFLOW IN THE SMALL 

The OFiS framework has been specifically designed to 
provide a flexible hardware abstraction for a huge set of 
heterogeneous multi-core processors with advance network off-
load capabilities. This approach not only provides a simple 
high-level platform-independent interface to SW developers, 
but it also gives the chance to optimally exploit the HW 
parallelism, and to differentiate the operations on incoming 
traffic flows in order to better meet the application-specific 
requirements and the overall Quality of Service (QoS) level. 

The main factor that makes OFiS particularly interesting is 
its ease of implementation: the framework described in the 
following is basic enough to deal with different HW 
architectures, but it can be easily extended in presence of more 
evolved HW enhancements to provide a more enriched 
implementation.  

Moreover, as it will be extensively shown in Section IV, 
OFiS provides an extremely valid support to increase the 
performance level obtained through a fine-grained CPU 
specialization and off-loading. 

A. Framework Description 

The name OpenFlow in the Small wants to attest that the 
base principles are the same used in OpenFlow, but the main 
structure has been adapted to cope with systems with 
heterogeneous capabilities that can be available in different 
network/packet processors.  

OFiS allows classifying incoming traffic into flows, and 
associating specific actions to them. In detail, incoming traffic 
is classified by means of a flow table. The flow table is 
composed by a number of entries � = 1, … , �  with	� ≤ �	
� . 
The generic i-th entry is a triple, composed by:  

• a flow descriptor fi,  

• a set of off-loading actions �

�
 with � = 1,… , �
, 

• a single redirection action Ri. 

Note that if � = 0	the flow table is empty and if �
 = 0 there 
are no off-loading actions associated to the i-th flow. 

Our flow descriptor fi is a data structure coincident to the 
OpenFlow definition [10], which contains a pre-defined set of 
fields from packet headers at multiple layers (from layer 2 to 
4). A variable-sized mask is associated to each descriptor field 
to provide a more aggregated flow representation. 

The actions to be performed on classified packets are 

organized into two main typologies: off-loading actions �

�
 and 

redirection ones Ri. Both �

�

 and Ri are expressed by a 

numerical code specifying the type of operation to be 
performed, and a list of input parameters as needed. The type 
of action defines the number and the format of input 
parameters needed. When actions are stored in the flow table, 
the numerical code of the action type is followed by the 
parameters. 

The presence of a single redirection action is mandatory on 
each entry, since it provides information on where classified 
packets have to be sent. Off-loading actions are optional, and 
one or more of them can be associated to the generic i-th flow. 



As discussed in more detail in Section III.B, in our current 
implementation off-loading actions correspond to the 
modification of one or more fields on the packet headers, but 
they can also include the insertion of a pre-padding to provide 
some information in advance, for example on the protocol, to 
the central cores, hence reducing the amount of operations they 
have to perform.  

B. The Flow Actions 

A wide set of actions to be applied to the classified flows 
can be defined and implemented. However, their feasibility 
strictly depends on the underlying architecture where OFiS is 
applied. In fact, because of HW limitations, some capabilities 
may not be supported on different devices. For this reason, 
when the operating system tries to add a new action to the flow 
table, OFiS has to check whether it is supported and, otherwise, 
returns an error message. 

As previously sketched, actions can be divided into two 
categories: redirection and off-loading. The first category 
includes discarding packets and packet redirection to a CPU or 
a subset of CPUs. The second one includes changing a field in 
the packet header, and can involve any header field at any 
level. 

The following list provides an example of a simple, yet 
effective, set of actions that we have already made available in 
our prototype implementation: 

• Redirection type 1: discard the packet; 

• Redirection type 2: forward packet to a subset of 
CPUs;  

• Redirection type 3: forward packet directly to a 
network interface; 

• Off-loading type 1: in IP header, modify source IP, 
destination IP, ToS or TTL, respectively; 

• Off-loading type 2: in TCP header, modify source or 
destination port, respectively; 

• Off-loading type 3: in UDP header, modify source or 
destination port, respectively; 

• Off-loading type 4: Add or remove a VLAN tag. 

Many other action types can be obviously defined. In our 
implementation, the action choice has fallen on the 
manipulation of those fields that particularly suit our purposes: 
varying IP addresses and TCP/UDP ports, for example, we can 
perform NAT without Netfilter support, as will be shown in 
Section IV.C, hence remove some overhead from the CPUs. 
Redirection to a subset of CPUs guarantees the efficient 
exploitation of CPUs specialized in processing different traffic 
flows. Finally, it is important to remind that changing a field in 
the header implies the need for checksum recalculation, 
otherwise a packet could be considered invalid.  

C. The OFiS Fast-Path Procedure 

When a packet incomes, a number of fields, corresponding 
to the ones specified in the flow descriptor data structure, are 
extracted from its headers (the “parsing” operation with 
reference to Figure 1).  

Then, the parsed fields must be used as a classification key 
to find the matching fi descriptor, if any. If multiple matching 
descriptors are present, the first one is selected. If no 
descriptors are matching, a default redirection is applied (e.g., 
redirect to CPU 0). Upon a matching fi descriptor selection, all 

off-loading actions	�

�
 associated to fi are sequentially applied 

to the packet. After all off-loading operations have been 
applied, the packet redirection Ri is finally performed.  

D. Managing Flow Entries 

The procedure to add or remove entries from the OFiS flow 
table is very simple, as the entire framework is driven by the 
local system (and not by a remote controller as in OpenFlow). 
In more detail, all the flow table modifications can be triggered 
by the SW running on the main processor.  

For instance, the procedure used for adding a new flow 
entry is depicted in Figure 2. First, the module controls if there 
is enough room to add a new flow to the flow table. Then, all 
off-loading and redirection actions are examined to determine 
if they are supported by the underlying HW. If all these sanity 
checks succeed, the flow table is updated, and the engines start 
using the new configuration. Otherwise, the configuration 
request is aborted and an error message is reported to the user-
space processes.  

IV.  PERFORMANCE EVALUATION 

Test results reported in this section have been collected in 
order to evaluate the overall performance of OFiS with respect 
to a reference scenario in which no such enhancements are 
introduced. Our aim is to show how OFiS allows improving 
traffic classification and redirection, and communication 
between the HW and the operating system. These aspects are 
crucial for optimally exploiting parallelization in multi-core 
processors. Moreover, as described in Section III, OFiS has the 
clear advantage of easily adapting to any underlying 
architecture, while HW off-load APIs are often proprietary and, 
even if providing similar functionalities, may differ much 
according to the chip manufacturer.  

 
Figure 1. The OFiS fast path procedure. 



With these aspects in mind, we decided to focus our tests 
on the actions of redirection and off-loading. At this aim, we 
performed a first set of measurements on a scenario in which 
both IP and UDP traffic income in our network processor, to 
show how redirection can improve the overall performance. 
Then, in the second test, NAT is performed on incoming IP 
traffic using Netfilter and then OFiS, in order to compare the 
impact of the two methods on the system.  

Both tests have been performed on the architecture 
presented in the next subsection. An Ixia Router Tester [11] 
has been used to generate traffic. The packet size is fixed to 64 
Bytes, while offered loads are reported in each test. 

A. Benchmarking Scenario 

The reference HW architecture we adopted is the XLP832 
[12]: a MIPS64-Release II processor with 8 EC4400 cores. 
Regarding the issues in parallel processors described in Section 
II, parallelization on the XLP is possible mainly because of the 
enhancements provided by the 2.6 Linux kernels, in particular 
thanks to the Symmetric Multi-Processor (SMP) support. For 
what concerns data coherency, CPU specialization obtained 
through the capacity of binding a process to a specific CPU 
(CPU affinity) can definitely reduce memory access, since the 
same information is likely to be exploited for multiple packets 
with the same characteristics (source, protocol, etc.), and can 
also reduce the number of CPUs trying to get the same data. 

The main characteristic of the XLP technology is 
represented by the presence of specific hardware devoted to 
off-load operations usually managed by the CPU cores, called 
acceleration engines. Among them, the Network Acceleration 
Engine (NAE) is responsible for providing a huge part of the 
traffic management: in fact, incoming traffic is first processed 
by this engine, and is then directed to the CPUs only if further 
processing is needed, otherwise the CPUs are completely 
bypassed. Most of this process is performed by a set of micro-
core engines, which are highly-programmable MIPS64 
processors with access to a shared data RAM and a Content 
Addressable Memory (CAM). 

In our implementation, the firmware of the micro-core 
engines has been developed in order to perform the operations 
in Figure 1, and to maintain a local version of the flow table. 
The flow table can be easily modified using a command-line 
application. To achieve maximum lookup speed, the CAM is 
used only for storing the flow descriptors, while the 
corresponding off-loading and redirection actions are in a local 
RAM.  

For what concerns the management of the flow table 
entries, a Linux kernel module was designed to receive 
commands from user-space processes, to interpret them and to 
check their feasibility. If all these procedures succeed, the 
module finally applies the changes to the off-loading hardware 
by updating the flow table. 

B. Redirection: UDP Test 

In order to show the performance we can obtain by the 
OFiS adoption with respect to redirection actions, we represent 
a situation in which an application has to process specific 
traffic.  

We consider a user-level UDP server that performs 
forwarding of UDP traffic at application layer. The traffic 
received by this UDP server has to be forwarded to another 
host. Of course, IP traffic is also processed and sent to the outer 
port.  

In detail, in order to exploit OFiS potentials, we have bound 
the UDP server to a specific CPU and added a flow entry 
telling the system to forward UDP traffic to that CPU. To show 
the performance improvement obtained through this procedure, 
we compared it to a reference scenario in which these 
capabilities are not available. 

Both scenarios have been tested forwarding the two traffic 
flows to the XLP. In detail, the system is receiving an IP flow 
incoming at 2.8 Mpkt/s, and a UDP one, whose speed varies 
between 14.880 and 74.404 Kpkt/s. Throughput and average 
latency of the UDP flow are measured at the varying packet 
rates. IP loss is also taken into account.  

Figure 3 shows the results obtained on the two scenarios in 
terms of UDP traffic throughput. As we can see, in the 
reference scenario we experience some loss on UDP traffic 
even at the lowest rate. Such loss becomes particularly 
effective when the rate overcomes 59.523 Kpkt/s: throughput 
was already decaying linearly, but starting from this rate its 
deterioration becomes particularly visible and invalidating. 

In the scenario with OFiS, instead, throughput does not 
decay or just loses a negligible percentage until 44.642 Kpkt/s. 
Although, for higher rates, loss becomes more visible, 
throughput decay is still lower than in the reference case.  

The IP traffic flow transmitted during this test does not 
suffer any packet loss in presence of OFiS. In the reference 
scenario, instead, packet loss on IP traffic appears when the 
rate of UDP overcomes 59.523 Kpkt/s, and reaches 36% at 
74.404 Kpkt/s. This result proves again the performance 
improvements obtained through redirection.  

The same considerations are still valid considering latency 
results in Figure 4: we can see that, for all tested UDP rates, 

 
Figure 2. The procedure to add a new flow entry. 



average latency is always lower when OFiS is introduced. This 
behavior is respected even in presence of loss on UDP traffic: 
as throughput falls at 44.642 Kpkt/s, latency starts to increase 
in the OFiS scenario but it still grows with a visibly slower 
trend with respect to the reference scenario. 

These results confirm the effectiveness of OFiS to provide 
more than satisfying performance levels increasing what 
already obtained with the mere adoption of redirection.  

C. Off-Loading: NAT Test 

The following test is meant to expose the improvement in 
terms of off-loading obtained using OFiS. As previously 
mentioned, off-loading is absolutely a keystone towards a full 
exploitation of parallel processors. The introduction of our 
framework definitely represents a step forward in this direction. 

With this respect, we decided to forward IP traffic and 
perform source NAT on all incoming packets. In the first test 
scenario, we used the most common method to manipulate 
traffic under Linux, which implies the use of iptables.  

This well-known user-space application is the classic way 
to perform firewall operations. However, the filtering 
operations performed at kernel level by Netfilter are very 
onerous and can heavily increase CPU utilization. OFiS, 
instead, does not have such a heavy impact on the system 
overall performance, because it needs no intervention from the 
Linux kernel.  

Results presented in the following show how the system 
benefits from OFiS introduction both in terms of network 
performance and global allocation of CPUs. 

IP traffic has been transmitted to a subset of 8 CPUs at 

various percentages of the maximum offered load, which, for 8 
CPUs and in absence of operations on the incoming packets, 
has been measured to be 1.4 Mpkt/s. 

Figures 5 and 6 represent the test results, obtained with 
iptables and OFiS. While the throughput obtained with OFiS 
reaches the offered load even at its maximum value, the 
scenario using iptables is affected by packet loss starting from 
50% of the maximum load. As a consequence, the same load is 
characterized by an abrupt growth of latency, which instead is 
quite constant in the second scenario and presents lower values 
with respect to those obtained using iptables on the whole set 
of tested traffic loads.  

A better understanding of these results can be obtained 
taking into account internal measurements performed on the 
XLP during packet processing. In detail, in order to provide a 
deeper analysis of the two scenarios, profiling has been 
performed on the CPUs involved in traffic forwarding. Using 
OProfile [13] at this purpose, we are able to effectively 
evaluate the CPU utilization of both each SW application and 
each single kernel function. Results reported in Figures 7 and 8 
show the global time allocation of the CPUs processing traffic 
in case iptables or OFiS are used.  

Considering Figure 7, representing the iptables scenario, 
the first aspect to be noticed is how scheduling and Netfilter are 
predominant among all events: throughout all offered loads, 
they account for more than 65% of the CPU allocation: we can 
state that Netfilter events are the main cause preventing the 
CPUs from going idle. For what concerns the other events, 
which all together allocate less than 40% of the CPU activity, 
we can see that they show a quite constant trend over the 
offered load. This is particularly odd considering packet header 
elaboration (pkth), which does not follow IP processing (ip). 

Moving on to Figure 8, representing CPU utilization when 
OFiS is introduced, the absence of Netfilter is definitely the 
main difference with respect to the previous results. Scheduling 
is now visibly predominant throughout the offered loads, 
though its impact is stronger at lowest rates. Moreover, since 
throughput always equals the offered load, scheduling 
decreases as traffic rises, while traffic processing related events 
follow the traffic behavior at all percentages of the offered 
load.  

V. CONCLUSIONS 

In this paper, we introduced a framework to provide a 
flexible hardware abstraction for a huge set of heterogeneous 
multi-core processors with advanced network off-loading 
capabilities. Our framework, called Open Flow in the Small 
(OFiS), has been designed with the aim of optimally exploiting 
HW parallelism, and of differentiating the operations on 
incoming traffic flows in order to better meet the application-
specific requirements and the overall Quality of Service (QoS) 
level.  

It is common knowledge that concurrency on shared data 
and data coherence can heavily challenge any gain introduced 
by the adoption of multi-core architectures in network 
processors. The proposed framework is particularly suited to 
cope with these issues, since it provides an extremely valid 
support to increase the performance level obtained through 

 
Figure 3. Throughput of the UDP traffic. 

 
Figure 4. Average latency of the UDP traffic 



redirection and off-loading actions. Among its advantages, it is 
worth mentioning flexibility: the framework is particularly 
easy to implement even on the most general purpose 
architectures, but it can also be extended without much effort in 
presence of more sophisticated HW. 

In order to show the advantages obtained through the 
introduction of OFiS, we have presented an example of its 
implementation on the XLP processor. Test results stated that 
both network and system performance are visibly improved in 
presence of our framework.  
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Figure 5. Throughput during NAT test. 

 
Figure 6. Average latency during NAT test. 

 
Figure 7. CPU utilization of 8 CPUs using iptables. 

 
Figure 8. CPU utilization of 8 CPUs using OFiS. 


