
 June 2012, 19(Suppl. 1): 79–86
www.sciencedirect.com/science/journal/10058885 http://jcupt.xsw.bupt.cn

The Journal of China
Universities of Posts and
Telecommunications

Optimizing energy-efficiency for program partitioning and
mapping onto multi-core packet processing systems

Jing Huang1, Olga Ormond1, Di Ma2, Xiaojun Wang1 (�)

1. School of Electronic Engineering, Dublin City University, Dublin, Ireland
2. Department of Computer Science, Iowa State University, Ames IA 50010, United States

Abstract

The sharp increase in bandwidth requirements and versatility of network applications has prompted packet processing
systems to widely adopt a multi-core multi-threaded architectural design. A challenging issue when programming such a
system is how to fully utilize the processing power in a pipeline-parallel topology. As the power consumption increases,
maintaining the energy-efficiency of the whole system also becomes delicate.

In this paper, we proposed a strategy based on graph bi-partitioning (Bi-Par) to automatically map the programming code
onto the multiple processing cores. The algorithm searches for an optimal configuration of the pipeline depth and the width
of each pipeline stage. Steps taken to optimize the performance include iterations over the sub-tasks at the pipeline edges,
and performing migration of tasks between cores to improve energy-efficiency. We designed a compiler framework to
implement the algorithm, and use an experimental model to validate it. The simulation results show that our approach
improves the energy-efficiency in all three benchmarks by between 8.04% and 34%, with a marginal loss in throughput.

Keywords packet processing systems, partitioning, program mapping, energy efficiency

1 Introduction �

The main function of a packet processing system is to
perform packets processing tasks at the network level. The
network functionality has been greatly expanded over the
past few years; and the network protocols have become
much more versatile. This trend has never been stopped, or
rather, is now accelerating [1]. To meet the soaring
performance requirement, the multi-core platform has
grown to be the de facto standard today, in terms of both
the vendors’ choices and researchers’ focuses. The system
architecture can be built upon general purpose processors
such as the Intel x86-64 Xeon [2], or RISC-based network
processors like Cavium’s OCTEON [3] and NetLogic’s
XLR processors [4], or FPGA-based chips, for example,
the NetFPGA project [5].

Programming in a multi-core platform however

Received date: 29-04-2012
Corresponding author: Xiaojun Wang, E-mail: xiaojun.wang@dcu.ie
DOI: 10.1016/S1005-8885(11)60464-0

implicates several daunting issues that are not obvious or
are non-existent in a single-core processor [6]. This paper
looks into two of the most prominent, yet correlated,
problems. The first challenge is how to schedule the
miscellaneous tasks in the parallel processing cores; the
second correlated challenge is how to control the overall
system energy consumption under a reasonable budget.
State-of-the-art network packet processing cores, such as
OCTEON CN58XX, feature fast parallel processing units
and hierarchical memory sub-systems. When developing
applications on such a platform, either the programmer or
the compiler has to know how to partition the parallel tasks
and map them onto the processing cores. In theory,
multi-core architectures can be configured into one of
three topologies, namely pipeline, parallel or a hybrid of
the two [7]. Fig. 1 illustrates a hybrid scheduling topology,
where in stage 2 the cores are run in parallel and the three
stages are run in pipeline connected by FIFO queues. The
task mapping is flexible enough; however, how to obtain
an optimal solution for a given set of applications, limited

80 The Journal of China Universities of Posts and Telecommunications 2012

processing cores and performance/latency metrics is still
an open question.

Fig. 1 Overview of multi-core packet processing system

Another prominent issue accompanying the wide
adoption of multi-core systems is their greater hunger for
processing power [8]. In task mapping, it is important to
find a comprehensive method that takes both the system
energy consumption and throughput into consideration.
While it is easy to scale up the number of cores and hence
the productivity, it is sometimes a self-contradictory goal
to increase both the power-efficiency and the overall
multi-core performance.

This paper proposed an integrated approach by
extending the traditional Bi-Par [9] in program partitioning
and mapping to consider the trade-off between energy
consumption and system scalability and versatility. The
specific contributions we make include:

1) We proposed an energy-aware method for deploying
multiple network applications on a multi-core network
processing system based on program partitioning and
task-to-core mapping.

2) We developed a generic framework with performance
and power models to evaluate the multi-core packet
processing system. The system can be configured in
parallel, pipeline or hybrid mode in a flexible way.

3) We gave the analysis of our approach in respect of
energy-consumption and system throughput.

4) A comparison with other related work was also
presented.

The focus of the paper is on our version of Bi-Par. To
the best of our knowledge, this is the first work on
extending Bi-Par and program mapping with
energy-saving considerations. The remainder of the paper
is organized as follows. Sect. 2 explains our application
model and formally defines the problem we are solving.
Sect. 3 describes the Bi-Par and task mapping algorithm in
the multi-core packet processing system, together with a

discussion of related approaches. Sect. 4 gives the results
of comparison between our Bi-Par and other approaches.
Finally Sect. 5 concludes our work and briefs the future
research.

2 Problem statement

We use program dependence graph (PDG) as the task
graph to characterize the network applications. PDG is a
kind of weighted directed acyclic graph (DAG) that
represents sub-function level program analysis information.
The instructions of a program are grouped together to form
a task by consolidating those instructions within the same
basic blocks (BB). The control-flow of instructions and
data-flow of variables are both categorized as dependency
among the tasks. Fig. 2 shows an example PDG generated
from checksum function analysis.

Fig. 2 A sample PDG

The round nodes contain only non-branch statements,
while diamond nodes have branch instructions at the exit.
Node weight is equal to the number of instructions each
node contains. Pentagonal nodes are used to summarize
control dependency and have zero weights. As for the
edges, solid lines depict control-flow dependency and the
dashed show data-flow dependency. Solid lines can be
labelled as ‘true’ or ‘false’ and the dashed edges labelled
with number of data transmits. The weight of the edge is
equal to the communication cost to transmit the
dependency.

Now we define a generic multi-core packet processing
system that the application model (PDG) will be mapped
onto. Let N be the number of available processing cores
and each core’s instruction store size is I_max. N cores can

Supplement 1 Jing Huang, et al. / Optimizing energy-efficiency for program partitioning and mapping onto… 81

be configured freely in pipeline or parallel fashion like in
Fig. 1. Suppose the pipeline has T stages, and in stage i the
number of cores used is iPE , then

1

T

i
i

PE N
�

�� (1)

In a stage, the packet latency will be determined by the
sum of three factors, namely computation time,
communication time between two stages, and memory
access time of each stage. In this work we measure the
performance from a system’s viewpoint first, i.e. the
system throughput.

If a task is mapped by duplication into M cores in one
stage, we can take the effective computation time as a
division of actual stage time by M. Multiple tasks can be
mapped onto different cores in one stage, so the overall
stage computation time and memory access time is subject
to the slowest task. Suppose there are W tasks mapped
onto one stage, then the effective stage time will be

1 1stage 1 comp 1 mem commmax () max ()W e W
i i� � � �� �� � � (2)

where

comp
comp

i

i

e

M
�

� � (3)

The system throughput is decided by the slowest stage
in the pipeline, so

1 stage

1Thoughput
max ()D

i ��

� (4)

and D is the pipeline length.
As for the energy consumption E, we consider the

classical equation
2

aE CK V� (5)
for the computational cost. aK is a task-processor

dependent factor and V is the voltage neither of which are
considered within this paper. But the cycle runtime C is
relevant here. And we measure the energy efficiency Eff as

ThroughputEff
Energyconsumption

� (6)

Instead of reducing the computational energy cost
directly, we focus on improving the energy efficiency. Due
to scheduling constraints (dependency) and inter-task
communication delays among the cores, it is not
straightforward to simply raise the ratio of packets per
cycle. The energy consumption of memory interfaces and
inter-stage communication should be taken into account
also.

The formal definition of the problem we are solving is

as follows. Given appM network applications described

by a PDG task graph and N processing cores that can be
configured in a hybrid pipeline and parallel topology
(subject to above constraints and equations), find an
optimal task allocation and mapping approach that will
increase the throughput rate while keeping the power
consumption under control, resulting in increased energy
efficiency.

3 Program Bi-Par and mapping

3.1 Base algorithm

The decision problem formulated in Sect. 2 is
NP-complete [10]. To solve this we adopted a
divide-and-conquer heuristic, namely program Bi-Par and
recursive task mapping. The base algorithm is an
application of the classical max-flow min-cut problem
from network flow study [11]. The PDG is augmented as a
flow network with dummy entry and exit nodes. A min-cut
will partition the graph into two sub-sets where the
connecting edges would incur minimum flow values. In
the case of PDG, this means that the edges with lowest
dependency weight between two sub-tasks will be chosen.
The workflow is given in Fig. 3. A detailed explanation of
each step is summarized in Table 1.

Fig. 3 Base recursive Bi-Par algorithm

Recall the equations we deduced in Sect. 2. The system
throughput is determined by three factors, i.e.
communication cost, computation cost and memory access
time. The min-cut ensures that the algorithm always tries

82 The Journal of China Universities of Posts and Telecommunications 2012

to minimize the communication cost. The balanced-weight
property guaranteed by the step 3 in Fig. 3 ensures that the
pipeline is evenly loaded so that very little overhead would
be wasted in synchronization. There is of course certain
trade-offs between finding minimum communication cost
and balancing the pipeline. We adopted a deviation factor �
to allow a flexible exploration between the two goals, as
detailed in Table 1. The cutting ratio � is measured by
the weights between two cuts, and can be used to find an
arbitrary number of cuts of the original program by
recursively running the Bi-Par.

Table 1 Steps in recursive Bi-Par
Input Flow graph, ,� �
Step 1 Identify the start and terminal node

Step 2 Find a min-cut that bi-partitions the network into X and X’. Let
W denotes the weights of X, and W’ for X’

Step 3 If (1) (1)t tW W W� � � �	 � , then terminate

Step 4.1 If (1) tW W� �
 	 , then collapse all nodes in X to start node
Step 4.2 Select a node in X’ and collapse it to the start node as well
Step 4.3 Go back to step 2

Step 5.1 If (1) tW W� �� � , then collapse all nodes in X’ to terminal
node

Step 5.2 Select a node in X and collapse it to the terminal node as well
Step 5.3 Go back to step 2
Output Two balanced cuts

After allocating the sub-tasks as indicated by the PDG
cuts, we assign each task with appropriate computation
resources. In our model, the nodes weight represents the
computational needs (in terms of core cycles) and the
edges weight labels the communication needs (interconnects
between cores). So we assign each task with the number of
cores in proportion to its nodes weight and the number
communication interconnects in scale with the PDG edges
weight.

3.2 Energy-aware extension

The algorithm described in Fig. 3 only takes throughput
performance into consideration and aims solely at
increasing throughput. However, as we discussed before,
the energy consumption cannot be overlooked nowadays
especially with the increasing number of cores on chip. So
we extended the original algorithm with refinement steps
using power-related data to increase the energy-efficiency.
The data we profiled mainly contains:

1) The average energy consumption on each processing
core. Recall that: 2

aE CK V� . Since V is constant here
and aK is not modifiable, we profile its number of
cycles (C) for a given task together with the respective
energy consumption on each core;

2) The energy consumption on interconnects. It
comprises two parts, i.e. leakage energy as a function of
running cycles and dynamic power related to the number
of dependences between tasks on different cores;

3) Energy consumption in memory interfaces.
During the task partitioning, we collect each node’s

weight in terms of both execution time and total energy. In
the task mapping, we iterate over the sub-tasks residing at
the edges of the graph between cuts, migrate each of them
to neighbouring cores and find out which migration would
reduce the product of stage time (in cycles) and energy
consumption (in J) the most, thus improving the
energy-efficiency as given in Eq. (6) (line 4 to 11).

The intuition behind the refinement heuristic is that by
migrating boundary nodes, a large search scope is
available for optimizing energy-efficiency at the cost of a
small throughput sacrifice. The proposed technique tries to
identify any groupings of nodes with uniform memory
accesses in order to minimize memory interface leakage.
Interconnects leakage power is saved by turning off
interconnects within un-balanced pipeline.
Energy-aware Bi-Par algorithm
Input: task graph G(V, E, ,v eW W), list of possible cores numbers
Output: task mapping matrixes;

 for each number of cores N
 Bi-Par (G, N)
 Compute stage time and energy consumption for two cuts

respectively, 1 1 2 2, , , T C T C

 for each boundary nodes iB
 try migrate iB to the neighbour cut
 re-compute 1 1 2 2, , , T C T C� � � �

 if 1 2 1 2

1 2 1 2

T T C C
T T C C

� �� �
�

� �� �
 then

 update the cut
 1 1 2 2 1 1 2 2, , , , C C C C T T T T� � � �� � � �
 end if
 end for
 allocate cores based on cut_ratio �
 if pipeline not even or code size > limit
 Bi-Par (Gi, Ni) /* recursive Bi-Par*/
 same migration trials in recursive Bi-Par
 end if
 for the number of stages S, record the task mapping in a

matrixM[S,N]
 end for
 return (M1[S1,N1], M2[S2,N2]…Mk[Sk,Nk])

3.3 Other approaches

A vast array of literature exists in the area of task
allocation and mapping for multi-threaded and/or

Supplement 1 Jing Huang, et al. / Optimizing energy-efficiency for program partitioning and mapping onto… 83

multi-core system [13–16]. As the focus of our work is on
network processing applications, we compare our
approach mainly with the studies in the networking area.

The early work proposed by Weng [17] employed
randomization in program mapping. The tasks are
randomly allocated to processing cores without violating
dependency constraints. All valid mappings are recorded
and the one with best throughput is filtered out in the
second phase of the strategy. Near-optimal mapping is not
guaranteed especially when the iteration time is limited.

Another heuristic described in Ref. [18] is based on
greedy algorithm. It packs the task by filling one
processing core with BB until the instruction store is full.
However, it does not take communication cost into
consideration; so the mapping quality could be
sub-optimal.

Our work resembles the approach discussed in Ref. [19]
most. Yu et al also adapted Bi-Par for network processors.
Their refinement focuses on throughput optimization and
does not include energy awareness. In our experiments, we
compared our results against these three approaches
[17–19] and give a comprehensive comparison analysis.

In Ref. [20] Kuang and Bhuyan took power budget into
consideration for task scheduling in packet processing
system. However, their approach is based on dynamical
voltage and frequency scaling (DVFS) which needs
hardware support. Additionally, their method reduces
power by extending the computation time, rather than
optimizing energy-efficiency. In this regard, we do not
compare with their approach in this paper.

4 Performance and energy-consumption evaluation

To validate our solution, we implemented a simulation
framework to allow easy and large design space
exploration. It has the performance and energy models
respectively. In this section we will describe the
experiments and discuss the results we collected using our
models.

4.1 Testbench framework

We extended the SUIF/Machsuif compiler [21] with
new passes that perform code analysis, PDG generation
and Bi-Par mapping. Fig. 4 depicts the brief components
and workflow of our test-bench. The application is first
profiled with Halt passes provided by Machsuif [21] and
the task graph with profiling analysis is fed into the PDG

generation pass. The PDG module will collect all the
information in an internal augmented PDG. Then program
partitioning and mapping is carried out over the PDG. Task
mapping results are input to the simulator to give
performance and energy results. This process can be
recursively executed to conduct comparison and
optimization for a given application or a set of
applications.

Fig. 4 Experiment framework

4.2 Performance results

In the system-level, the total throughput of a network
processing system is the decisive measurement of the
performance. However, the individual packet latency is
also an important factor in many applications, e.g.
real-time streaming. For comparison, we use the
framework to evaluate three other approaches from the
literature described in Sect. 3. The benchmark applications
are LC-Trie IP-forwarding, IP packet encryption (IPsec)
and Port-Scan adopted from PacketBench [22]. The core
frequency was set to 2 GHz. Both memory access time and
interconnects transmission time are assumed to be one unit
of clock cycle.

Table 3 shows the throughput measurements for
different combinations of the three applications with
different numbers of processing cores. Since the code size
limit is seldom a bottleneck for modern multi-core network
systems, the number of pipeline stages in our evaluation
were short. Thus the even number of cores is preferred to
enable parallel processing across pipelines. In Table 2,
application I is LC-Trie, II is IPSec, and III is Port-Scan.
For all of the applications, our energy-aware Bi-Par
exhibits good scalability as the number of cores increase.

84 The Journal of China Universities of Posts and Telecommunications 2012

The throughput gain is greater than double when cores are
added from 8 to 16 and upwards. This is due to the free
migration of tasks that have high communications cost
between pipelines when processing resources are abundant.
Bi-Par favours communication-heavy applications over
computation-heavy ones since the base algorithm
minimizes inter-stage communication cost. The throughput
increase from 16 to 32 cores for PortScan is 269% while
for IPsec is 244% in this case.

Table 2 Throughput for combinations of three applications in
multiple cores

+ + + + +
2 Cores 0.56 0.18 0.11 0.11 0.05 0.07 N/A
4 Cores 0.91 0.33 0.28 0.18 0.11 0.12 0.04
8 Cores 1.65 0.75 0.6 0.41 0.39 0.41 0.12
16 Cores 3.78 1.98 1.43 1.12 0.88 0.9 0.41
32 Cores 8.75 4.85 3.85 3.1 2.12 2.43 1.45

To avoid any potential bias, we used LC-Trie plus IPsec
in the performance comparison experiments. Fig. 5
illustrates the results when 16 cores are used for mapping
the two applications. By varying the number of stages, we
are simulating different requirement for task code sizes.
Our approach (BiPar-E) shows 33.1% throughput
improvement over greedy in a 2-stage pipeline and 50.7%
over randomization in a 4-stage pipeline. Randomization
requires very large search space as we discussed. When the
pipeline is longer (i.e. more applications) and search time
is predefined, it is hard to reach a good mapping. Our
energy-aware extension brings an average of 10%
throughput decrease compared to Bi-Par without migration.
We will revisit it with energy consumption data to validate
if the efficiency is improved.

Fig. 5 Throupugh comparison by number of stages

Fig. 6 summarizes the individual packet latency
comparison for the three benchmark applications. For
LC-Trie, four approaches generate similar results. For the
other two applications, the latency difference is within
10% margin among the four approaches. And our
extension involved a slight 5% increase on average. A safe
conclusion is that the energy-aware Bi-Par would not
sabotage the individual packet latency even if we optimize

for system throughput.

Fig. 6 Latency comparison by applications

4.3 Energy results

We measure the energy efficiency of our algorithm as
the system throughput divided by total energy
consumption (in J). The runtime power is usually an
important indication of the energy-efficiency. However,
traditional techniques such as DVFS just try to reduce
power at the expense of longer runtime cycles. The total
energy consumption could be well the same if not more in
that case, implying that the energy-efficiency is not
improved. Here we organized our energy data from an
efficiency perspective as depicted in Fig. 7. The bar graph
shows the total energy consumed by processing one
million packets with three benchmarks respectively and in
increasing order by the number of processing cores. The
trend-line illustrates the energy-efficiency by graphing the
throughput (in mp/s) over energy consumption (in J). In all
benchmarks, the energy-efficiency is clearly on the rise as
we scale up the number of cores. It proves our
energy-aware Bi-Par to be particularly beneficial in a large
system with dozens of processing cores. For LC-Trie, we
noted 25.4% increase of energy-efficiency when cores are
populated up from 2 to 16. The corresponding increase for
IPsec is 168% and 29.4% for PortScan. The dramatic rise
for IPsec is majorly attributed to the little heat overhead in
interconnects and memory interface, especially the leakage
power (which is considerably larger in LC-Trie).

Fig. 7 Energy consumption comparison by applications

Supplement 1 Jing Huang, et al. / Optimizing energy-efficiency for program partitioning and mapping onto… 85

To explicitly demonstrate the energy-efficiency gains of
our Bi-Par and extension, we collected the energy-related
data of other three approaches in our simulator as well. We
used 8 processing cores and set each core’s maximum code
size to be 2 000. The results are shown in Fig. 8. For all the
three benchmarks, our algorithm not only excels the
original Bi-Par without energy-aware refinement, but also
generates better mappings than greedy and randomization.
In IPsec, BiPar-E gained 34% energy-efficiency increase
by migrating tasks in the refinement step. The outstanding
gain is mainly because the availability of many sub-tasks
at edges and little back-dependency among them. The
power on processing core is the decisive factor for IPsec so
the migration can take considerable effect. By nature,
migration refinement can have little impact on memory
and interconnects energy consumption except for leakage
power. Yet in LC-Trie and PortScan we still observed an
average of 10% efficiency improvement after refinement
step. Therefore, our algorithm proves promising and
advantageous both in terms of scalability and universality.

Fig. 8 Energy efficiency comparison by applications

5 Conclusions

In this work, we proposed an energy-efficient program
partitioning and mapping algorithm for packet processing
systems. The approach is based on Bi-Par and built into a
compiler suite. We also implemented an evaluation
framework to simulate the multi-core network processing
system in terms of performance and energy consumption.
We observe 8.04%–34% increase in energy-efficiency by
applying our refinement with only a slight throughput loss
in comparison with three other partitioning and mapping
algorithms, i.e. greedy, randomization and base Bi-Par.

The current algorithm looks at BB of the program code
for partitioning and migrations. In future work, we plan to
extend our algorithm into lower level like instructions to
fine-tune the energy-efficiency refinement step.

Acknowledgements

This work was supported by the Embark Initiative of the Irish
Research Council for Science, Engineering and Technology and by
the European FP7 ECONET Project (258454).

References

1. Bolla R, Bruschi R, Davoli F, et al. Energy efficiency in the future
Internet: a survey of existing approaches and trends in energy-aware fixed
network infrastructures. Communications Surveys & Tutorials, IEEE.
Second Quarter, 2011, 13(2)

2. Xia G, Liu B. Accelerating network applications on X86-64 platforms.
IEEE Symposium on Computers and Communications (ISCC). Jun 2010

3. Meng J, Chen X, Chen Z, et al. Towards high-performance IPsec on
cavium OCTEON platform. Trusted Systems. 2011, 6802

4. Halfhill T R. Netlogic broadens XLP family. Microprocessor Rep.. 2010,
24

5. Yin D, Unnikrishnan D, Liao Y, et al. Customizing virtual networks with
partial FPGA reconfiguration. ACM SIGCOMM workshop on Virtualized
Infrastructure Systems and Architectures (VISA). 2010

6. Hoare C A R. Communicating sequential processes. Commun. ACM 26.
Jan 1983, 1: 100	106

7. Yao J, Luo Y, Bhuyan, et al. Optimal network processor topologies for
efficient packet processing. Global Telecommunications Conference,
GLOBECOM. Nov 2005

8. Chang P, Wu I, Shann J J, et al. ETAHM: an energy-aware task allocation
algorithm for heterogeneous multiprocessor. Design Automation
Conference (DAC). Jun 2008

9. Yang H H, Wong D F. Balanced partitioning. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems. Dec 1996

10. Plishker W, Ravindran K, Shah N. Automated task allocation on single
chip, hardware multithreaded, multiprocessor systems. Workshop on
Embedded Parallel Architectures (WEPA). 2004

11. Yang H, Wong D F. Efficient network flow based min-cut balanced
partitioning. IEEE/ACM International Conference on Computer-Aided
Design. 1994

12. Mishra R, Rastogi N, Zhu D, et al. Energy aware scheduling for
distributed real-time systems. Parallel and Distributed Processing
Symposium. Apr 2003

13. Zhang Y, Ootsu K, Yokota T, et al. Automatic thread decomposition for
pipelined multithreading. IEEE 16th International Conference on Parallel
and Distributed Systems (ICPADS). Dec 2010

14. Dai J, Huang B, Li L, et al. Automatically partitioning packet processing
applications for pipelined architectures. ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI). Jun 2005

15. Mallik A, Zhang Y, Memik G. Automated task distribution in multicore
network processors using statistical analysis. The 3rd ACM/IEEE
Symposium on Architecture for Networking and Communications
Systems (ANCS). 2007

16. Li L, Huang B, Dai J, et al. Automatic multithreading and multiprocessing
of C programs for IXP. The tenth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP), 2005

17. Weng N, Wolf T. Profiling and mapping of parallel workloads on network
processors. 20th Annual ACM Symposium on Applied Computing. Mar
2005

86 The Journal of China Universities of Posts and Telecommunications 2012

18. Yao J, Luo Y, Bhuyan L, et al. Optimal network processor topologies for
efficient packet processing. GLOBECOM’05: IEEE Global
Telecommunications Conference. Dec 2005

19. Yu J, Yao J, Bhuyan L, et al. Program mapping onto network processors
by recursive bipartitioning and refining. 44th ACM/IEEE Design
Automation Conference (DAC). 2007

20. Kuang J, Bhuyan L. Optimizing throughput and latency under given

power budget for network packet processing. IEEE Conference on
Computer Communications. 2010

21. Lam M. An overview of the SUIF2 system. ACM Conference on
Programming Language Design and Implementation (SIGPLAN). 2009

22. Ramaswamy R, Wolf T. PacketBench: a tool for workload
characterization of network processing. IEEE International Workshop on
Workload Characterization. 2003

From p. 78

References

1. Cui T, Tellambura C. Blind receiver design for OFDM systems over
doubly selective channels. IEEE Trans. Commun.. May 2007, 55(5):
906	917

2. Bingham J A C. Multicarrier modulation for data transmission: an idea
whose time has come. IEEE Commun. Mag..May 1990: 5	14

3. Beek J, Edfors O, Sandell M, et al. OFDM channel estimation by singular
value decomposition. IEEE Trans. Commun.. Jul 1998, 46: 931	939

4. Tanabe N, Furukawa T, Tsujii S. Robust noise suppression algorithm with
Kalman filter theory white and colored disturbance. IEICE Trans.
Fundamentals. Mar 2008, E91-A(3): 818	829

5. Morelli M, Mengali U. A comparison of pilot-aided channel estimation
methods for OFDM systems. IEEE Trans. Signal Process.Dce 2001,
49(12): 3065	3073

6. Steele R. Mobile radio communications. New York: IEEE, 1992
7. Cui T, Tellambura C. Blind receiver design for OFDM systems over

doubly selective channels. IEEE Trans. Commun.. May 2007, 55(5):
906	917

8. Garcia M J F G, Rojo A J L. Support vector machines for robust channel
estimation in OFDM. IEEE Signal Processing Letters. Jul 2006, 13(7):
397	400

9. Cheney E W. Introduction to Approximation Theory. New York:
Mc-Graw-Hill, 1966

10. Wang X, Liu K J R. An adaptive channel estimation algorithm using
time-frequency polynomial model for OFDM. Applied Signal Process.
2002: 818	830

