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Abstract

The sharp increase in bandwidth requirements and versatility of network applications has prompted packet processing 
systems to widely adopt a multi-core multi-threaded architectural design. A challenging issue when programming such a 
system is how to fully utilize the processing power in a pipeline-parallel topology. As the power consumption increases, 
maintaining the energy-efficiency of the whole system also becomes delicate. 

In this paper, we proposed a strategy based on graph bi-partitioning (Bi-Par) to automatically map the programming code 
onto the multiple processing cores. The algorithm searches for an optimal configuration of the pipeline depth and the width 
of each pipeline stage. Steps taken to optimize the performance include iterations over the sub-tasks at the pipeline edges, 
and performing migration of tasks between cores to improve energy-efficiency. We designed a compiler framework to 
implement the algorithm, and use an experimental model to validate it. The simulation results show that our approach 
improves the energy-efficiency in all three benchmarks by between 8.04% and 34%, with a marginal loss in throughput. 
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1  Introduction �

The main function of a packet processing system is to 
perform packets processing tasks at the network level. The 
network functionality has been greatly expanded over the 
past few years; and the network protocols have become 
much more versatile. This trend has never been stopped, or 
rather, is now accelerating [1]. To meet the soaring 
performance requirement, the multi-core platform has 
grown to be the de facto standard today, in terms of both 
the vendors’ choices and researchers’ focuses. The system 
architecture can be built upon general purpose processors 
such as the Intel x86-64 Xeon [2], or RISC-based network 
processors like Cavium’s OCTEON [3] and NetLogic’s 
XLR processors [4], or FPGA-based chips, for example, 
the NetFPGA project [5]. 

Programming in a multi-core platform however 
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implicates several daunting issues that are not obvious or 
are non-existent in a single-core processor [6]. This paper 
looks into two of the most prominent, yet correlated, 
problems. The first challenge is how to schedule the 
miscellaneous tasks in the parallel processing cores; the 
second correlated challenge is how to control the overall 
system energy consumption under a reasonable budget. 
State-of-the-art network packet processing cores, such as 
OCTEON CN58XX, feature fast parallel processing units 
and hierarchical memory sub-systems. When developing 
applications on such a platform, either the programmer or 
the compiler has to know how to partition the parallel tasks 
and map them onto the processing cores. In theory, 
multi-core architectures can be configured into one of 
three topologies, namely pipeline, parallel or a hybrid of 
the two [7]. Fig. 1 illustrates a hybrid scheduling topology, 
where in stage 2 the cores are run in parallel and the three 
stages are run in pipeline connected by FIFO queues. The 
task mapping is flexible enough; however, how to obtain 
an optimal solution for a given set of applications, limited 
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processing cores and performance/latency metrics is still 
an open question. 

Fig. 1  Overview of multi-core packet processing system

Another prominent issue accompanying the wide 
adoption of multi-core systems is their greater hunger for 
processing power [8]. In task mapping, it is important to 
find a comprehensive method that takes both the system 
energy consumption and throughput into consideration. 
While it is easy to scale up the number of cores and hence 
the productivity, it is sometimes a self-contradictory goal 
to increase both the power-efficiency and the overall 
multi-core performance. 

This paper proposed an integrated approach by 
extending the traditional Bi-Par [9] in program partitioning 
and mapping to consider the trade-off between energy 
consumption and system scalability and versatility. The 
specific contributions we make include: 

1) We proposed an energy-aware method for deploying 
multiple network applications on a multi-core network 
processing system based on program partitioning and 
task-to-core mapping. 

2) We developed a generic framework with performance 
and power models to evaluate the multi-core packet 
processing system. The system can be configured in 
parallel, pipeline or hybrid mode in a flexible way. 

3) We gave the analysis of our approach in respect of 
energy-consumption and system throughput. 

4) A comparison with other related work was also 
presented. 

The focus of the paper is on our version of Bi-Par. To 
the best of our knowledge, this is the first work on 
extending Bi-Par and program mapping with 
energy-saving considerations. The remainder of the paper 
is organized as follows. Sect. 2 explains our application 
model and formally defines the problem we are solving. 
Sect. 3 describes the Bi-Par and task mapping algorithm in 
the multi-core packet processing system, together with a 

discussion of related approaches. Sect. 4 gives the results 
of comparison between our Bi-Par and other approaches. 
Finally Sect. 5 concludes our work and briefs the future 
research. 

2  Problem statement 

We use program dependence graph (PDG) as the task 
graph to characterize the network applications. PDG is a 
kind of weighted directed acyclic graph (DAG) that 
represents sub-function level program analysis information. 
The instructions of a program are grouped together to form 
a task by consolidating those instructions within the same 
basic blocks (BB). The control-flow of instructions and 
data-flow of variables are both categorized as dependency 
among the tasks. Fig. 2 shows an example PDG generated 
from checksum function analysis. 

Fig. 2  A sample PDG 

The round nodes contain only non-branch statements, 
while diamond nodes have branch instructions at the exit. 
Node weight is equal to the number of instructions each 
node contains. Pentagonal nodes are used to summarize 
control dependency and have zero weights. As for the 
edges, solid lines depict control-flow dependency and the 
dashed show data-flow dependency. Solid lines can be 
labelled as ‘true’ or ‘false’ and the dashed edges labelled 
with number of data transmits. The weight of the edge is 
equal to the communication cost to transmit the 
dependency. 

Now we define a generic multi-core packet processing 
system that the application model (PDG) will be mapped 
onto. Let N be the number of available processing cores 
and each core’s instruction store size is I_max. N cores can 
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be configured freely in pipeline or parallel fashion like in 
Fig. 1. Suppose the pipeline has T stages, and in stage i the 
number of cores used is iPE , then 

1

T

i
i

PE N
�

��                                  (1) 

In a stage, the packet latency will be determined by the 
sum of three factors, namely computation time, 
communication time between two stages, and memory 
access time of each stage. In this work we measure the 
performance from a system’s viewpoint first, i.e. the 
system throughput. 

If a task is mapped by duplication into M cores in one 
stage, we can take the effective computation time as a 
division of actual stage time by M. Multiple tasks can be 
mapped onto different cores in one stage, so the overall 
stage computation time and memory access time is subject 
to the slowest task. Suppose there are W tasks mapped 
onto one stage, then the effective stage time will be 
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The system throughput is decided by the slowest stage 
in the pipeline, so 

1 stage

1Thoughput
max ( )D

i ��

�                     (4) 

and D is the pipeline length. 
As for the energy consumption E, we consider the 

classical equation 
2

aE CK V�                                 (5) 
for the computational cost. aK  is a task-processor 

dependent factor and V is the voltage neither of which are 
considered within this paper. But the cycle runtime C is 
relevant here. And we measure the energy efficiency Eff as 

ThroughputEff
Energyconsumption

�                      (6) 

Instead of reducing the computational energy cost 
directly, we focus on improving the energy efficiency. Due 
to scheduling constraints (dependency) and inter-task 
communication delays among the cores, it is not 
straightforward to simply raise the ratio of packets per 
cycle. The energy consumption of memory interfaces and 
inter-stage communication should be taken into account 
also.

The formal definition of the problem we are solving is 

as follows. Given appM  network applications described 

by a PDG task graph and N processing cores that can be 
configured in a hybrid pipeline and parallel topology 
(subject to above constraints and equations), find an 
optimal task allocation and mapping approach that will 
increase the throughput rate while keeping the power 
consumption under control, resulting in increased energy 
efficiency. 

3  Program Bi-Par and mapping 

3.1  Base algorithm 

The decision problem formulated in Sect. 2 is 
NP-complete [10]. To solve this we adopted a 
divide-and-conquer heuristic, namely program Bi-Par and 
recursive task mapping. The base algorithm is an 
application of the classical max-flow min-cut problem 
from network flow study [11]. The PDG is augmented as a 
flow network with dummy entry and exit nodes. A min-cut 
will partition the graph into two sub-sets where the 
connecting edges would incur minimum flow values. In 
the case of PDG, this means that the edges with lowest 
dependency weight between two sub-tasks will be chosen. 
The workflow is given in Fig. 3. A detailed explanation of 
each step is summarized in Table 1. 

Fig. 3  Base recursive Bi-Par algorithm 

Recall the equations we deduced in Sect. 2. The system 
throughput is determined by three factors, i.e. 
communication cost, computation cost and memory access 
time. The min-cut ensures that the algorithm always tries 
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to minimize the communication cost. The balanced-weight 
property guaranteed by the step 3 in Fig. 3 ensures that the 
pipeline is evenly loaded so that very little overhead would 
be wasted in synchronization. There is of course certain 
trade-offs between finding minimum communication cost 
and balancing the pipeline. We adopted a deviation factor � 
to allow a flexible exploration between the two goals, as 
detailed in Table 1. The cutting ratio �  is measured by 
the weights between two cuts, and can be used to find an 
arbitrary number of cuts of the original program by 
recursively running the Bi-Par. 

Table 1  Steps in recursive Bi-Par 
Input Flow graph, ,� �
Step 1 Identify the start and terminal node 

Step 2 Find a min-cut that bi-partitions the network into X and X’. Let 
W denotes the weights of X, and W’ for X’

Step 3 If (1 ) (1 )t tW W W� � � �	 � , then terminate 

Step 4.1 If (1 ) tW W� �
 	 , then collapse all nodes in X to start node 
Step 4.2 Select a node in X’ and collapse it to the start node as well 
Step 4.3 Go back to step 2 

Step 5.1 If (1 ) tW W� �� � , then collapse all nodes in X’ to terminal 
node 

Step 5.2 Select a node in X and collapse it to the terminal node as well 
Step 5.3 Go back to step 2 
Output Two balanced cuts 

After allocating the sub-tasks as indicated by the PDG 
cuts, we assign each task with appropriate computation 
resources. In our model, the nodes weight represents the 
computational needs (in terms of core cycles) and the 
edges weight labels the communication needs (interconnects 
between cores). So we assign each task with the number of 
cores in proportion to its nodes weight and the number 
communication interconnects in scale with the PDG edges 
weight. 

3.2  Energy-aware extension 

The algorithm described in Fig. 3 only takes throughput 
performance into consideration and aims solely at 
increasing throughput. However, as we discussed before, 
the energy consumption cannot be overlooked nowadays 
especially with the increasing number of cores on chip. So 
we extended the original algorithm with refinement steps 
using power-related data to increase the energy-efficiency. 
The data we profiled mainly contains: 

1) The average energy consumption on each processing 
core. Recall that: 2

aE CK V� . Since V is constant here 
and aK  is not modifiable, we profile its number of  
cycles (C) for a given task together with the respective 
energy consumption on each core; 

2) The energy consumption on interconnects. It 
comprises two parts, i.e. leakage energy as a function of 
running cycles and dynamic power related to the number 
of dependences between tasks on different cores; 

3) Energy consumption in memory interfaces. 
During the task partitioning, we collect each node’s 

weight in terms of both execution time and total energy. In 
the task mapping, we iterate over the sub-tasks residing at 
the edges of the graph between cuts, migrate each of them 
to neighbouring cores and find out which migration would 
reduce the product of stage time (in cycles) and energy 
consumption (in J) the most, thus improving the 
energy-efficiency as given in Eq. (6) (line 4 to 11). 

The intuition behind the refinement heuristic is that by 
migrating boundary nodes, a large search scope is 
available for optimizing energy-efficiency at the cost of a 
small throughput sacrifice. The proposed technique tries to 
identify any groupings of nodes with uniform memory 
accesses in order to minimize memory interface leakage.  
Interconnects leakage power is saved by turning off 
interconnects within un-balanced pipeline. 
Energy-aware Bi-Par algorithm 
Input: task graph G(V, E, ,v eW W ),  list of possible cores numbers 
Output: task mapping matrixes; 

 for each number of cores N
     Bi-Par (G, N)
     Compute stage time and energy consumption for two cuts 

respectively, 1 1 2 2,  ,  ,  T C T C

     for each boundary nodes iB
         try migrate iB  to the neighbour cut 
         re-compute 1 1 2 2,  ,  ,  T C T C� � � �

         if 1 2 1 2

1 2 1 2

T T C C
T T C C

� �� �
�

� �� �
 then 

             update the cut 
             1 1 2 2 1 1 2 2,  ,  ,  ,  C C C C T T T T� � � �� � � �
         end if 
    end for 
    allocate cores based on cut_ratio �
    if pipeline not even or code size > limit 
       Bi-Par (Gi, Ni)  /* recursive Bi-Par*/ 
       same migration trials in recursive Bi-Par 
    end if 
    for the number of stages S, record the task mapping in a 

matrixM[S,N]
 end for 
 return (M1[S1,N1], M2[S2,N2]…Mk[Sk,Nk]) 

3.3  Other approaches 

A vast array of literature exists in the area of task 
allocation and mapping for multi-threaded and/or 



Supplement 1       Jing Huang, et al. / Optimizing energy-efficiency for program partitioning and mapping onto…        83 

multi-core system [13–16]. As the focus of our work is on 
network processing applications, we compare our 
approach mainly with the studies in the networking area. 

The early work proposed by Weng [17] employed 
randomization in program mapping. The tasks are 
randomly allocated to processing cores without violating 
dependency constraints. All valid mappings are recorded 
and the one with best throughput is filtered out in the 
second phase of the strategy. Near-optimal mapping is not 
guaranteed especially when the iteration time is limited. 

Another heuristic described in Ref. [18] is based on 
greedy algorithm. It packs the task by filling one 
processing core with BB until the instruction store is full. 
However, it does not take communication cost into 
consideration; so the mapping quality could be 
sub-optimal.  

Our work resembles the approach discussed in Ref. [19] 
most. Yu et al also adapted Bi-Par for network processors. 
Their refinement focuses on throughput optimization and 
does not include energy awareness. In our experiments, we 
compared our results against these three approaches   
[17–19] and give a comprehensive comparison analysis. 

In Ref. [20] Kuang and Bhuyan took power budget into 
consideration for task scheduling in packet processing 
system. However, their approach is based on dynamical 
voltage and frequency scaling (DVFS) which needs 
hardware support. Additionally, their method reduces 
power by extending the computation time, rather than 
optimizing energy-efficiency. In this regard, we do not 
compare with their approach in this paper. 

4  Performance and energy-consumption evaluation 

To validate our solution, we implemented a simulation 
framework to allow easy and large design space 
exploration. It has the performance and energy models 
respectively. In this section we will describe the 
experiments and discuss the results we collected using our 
models. 

4.1  Testbench framework 

We extended the SUIF/Machsuif compiler [21] with 
new passes that perform code analysis, PDG generation 
and Bi-Par mapping. Fig. 4 depicts the brief components 
and workflow of our test-bench. The application is first 
profiled with Halt passes provided by Machsuif [21] and 
the task graph with profiling analysis is fed into the PDG 

generation pass. The PDG module will collect all the 
information in an internal augmented PDG. Then program 
partitioning and mapping is carried out over the PDG. Task 
mapping results are input to the simulator to give 
performance and energy results. This process can be 
recursively executed to conduct comparison and 
optimization for a given application or a set of 
applications. 

Fig. 4  Experiment framework

4.2  Performance results 

In the system-level, the total throughput of a network 
processing system is the decisive measurement of the 
performance. However, the individual packet latency is 
also an important factor in many applications, e.g. 
real-time streaming. For comparison, we use the 
framework to evaluate three other approaches from the 
literature described in Sect. 3. The benchmark applications 
are LC-Trie IP-forwarding, IP packet encryption (IPsec) 
and Port-Scan adopted from PacketBench [22]. The core 
frequency was set to 2 GHz. Both memory access time and 
interconnects transmission time are assumed to be one unit 
of clock cycle. 

Table 3 shows the throughput measurements for 
different combinations of the three applications with 
different numbers of processing cores. Since the code size 
limit is seldom a bottleneck for modern multi-core network 
systems, the number of pipeline stages in our evaluation 
were short. Thus the even number of cores is preferred to 
enable parallel processing across pipelines. In Table 2, 
application I is LC-Trie, II is IPSec, and III is Port-Scan. 
For all of the applications, our energy-aware Bi-Par 
exhibits good scalability as the number of cores increase. 
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The throughput gain is greater than double when cores are 
added from 8 to 16 and upwards. This is due to the free 
migration of tasks that have high communications cost 
between pipelines when processing resources are abundant.  
Bi-Par favours communication-heavy applications over 
computation-heavy ones since the base algorithm 
minimizes inter-stage communication cost. The throughput 
increase from 16 to 32 cores for PortScan is 269% while 
for IPsec is 244% in this case. 

Table 2  Throughput for combinations of three applications in 
multiple cores 

+ + + + +
2 Cores 0.56 0.18 0.11 0.11 0.05 0.07 N/A 
4 Cores 0.91 0.33 0.28 0.18 0.11 0.12 0.04 
8 Cores 1.65 0.75 0.6 0.41 0.39 0.41 0.12 
16 Cores 3.78 1.98 1.43 1.12 0.88 0.9 0.41 
32 Cores 8.75 4.85 3.85 3.1 2.12 2.43 1.45 

To avoid any potential bias, we used LC-Trie plus IPsec 
in the performance comparison experiments. Fig. 5 
illustrates the results when 16 cores are used for mapping 
the two applications. By varying the number of stages, we 
are simulating different requirement for task code sizes. 
Our approach (BiPar-E) shows 33.1% throughput 
improvement over greedy in a 2-stage pipeline and 50.7% 
over randomization in a 4-stage pipeline. Randomization 
requires very large search space as we discussed. When the 
pipeline is longer (i.e. more applications) and search time 
is predefined, it is hard to reach a good mapping. Our 
energy-aware extension brings an average of 10% 
throughput decrease compared to Bi-Par without migration. 
We will revisit it with energy consumption data to validate 
if the efficiency is improved. 

Fig. 5  Throupugh comparison by number of stages 

Fig. 6 summarizes the individual packet latency 
comparison for the three benchmark applications. For 
LC-Trie, four approaches generate similar results. For the 
other two applications, the latency difference is within 
10% margin among the four approaches. And our 
extension involved a slight 5% increase on average. A safe 
conclusion is that the energy-aware Bi-Par would not 
sabotage the individual packet latency even if we optimize 

for system throughput. 

Fig. 6  Latency comparison by applications 

4.3  Energy results 

We measure the energy efficiency of our algorithm as 
the system throughput divided by total energy 
consumption (in J). The runtime power is usually an 
important indication of the energy-efficiency. However, 
traditional techniques such as DVFS just try to reduce 
power at the expense of longer runtime cycles. The total 
energy consumption could be well the same if not more in 
that case, implying that the energy-efficiency is not 
improved. Here we organized our energy data from an 
efficiency perspective as depicted in Fig. 7. The bar graph 
shows the total energy consumed by processing one 
million packets with three benchmarks respectively and in 
increasing order by the number of processing cores. The 
trend-line illustrates the energy-efficiency by graphing the 
throughput (in mp/s) over energy consumption (in J). In all 
benchmarks, the energy-efficiency is clearly on the rise as 
we scale up the number of cores. It proves our 
energy-aware Bi-Par to be particularly beneficial in a large 
system with dozens of processing cores. For LC-Trie, we 
noted 25.4% increase of energy-efficiency when cores are 
populated up from 2 to 16. The corresponding increase for 
IPsec is 168% and 29.4% for PortScan. The dramatic rise 
for IPsec is majorly attributed to the little heat overhead in 
interconnects and memory interface, especially the leakage 
power (which is considerably larger in LC-Trie). 

Fig. 7  Energy consumption comparison by applications 
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To explicitly demonstrate the energy-efficiency gains of 
our Bi-Par and extension, we collected the energy-related 
data of other three approaches in our simulator as well. We 
used 8 processing cores and set each core’s maximum code 
size to be 2 000. The results are shown in Fig. 8. For all the 
three benchmarks, our algorithm not only excels the 
original Bi-Par without energy-aware refinement, but also 
generates better mappings than greedy and randomization. 
In IPsec, BiPar-E gained 34% energy-efficiency increase 
by migrating tasks in the refinement step. The outstanding 
gain is mainly because the availability of many sub-tasks 
at edges and little back-dependency among them. The 
power on processing core is the decisive factor for IPsec so 
the migration can take considerable effect. By nature, 
migration refinement can have little impact on memory 
and interconnects energy consumption except for leakage 
power. Yet in LC-Trie and PortScan we still observed an 
average of 10% efficiency improvement after refinement 
step. Therefore, our algorithm proves promising and 
advantageous both in terms of scalability and universality. 

Fig. 8  Energy efficiency comparison by applications 

5  Conclusions 

In this work, we proposed an energy-efficient program 
partitioning and mapping algorithm for packet processing 
systems. The approach is based on Bi-Par and built into a 
compiler suite. We also implemented an evaluation 
framework to simulate the multi-core network processing 
system in terms of performance and energy consumption. 
We observe 8.04%–34% increase in energy-efficiency by 
applying our refinement with only a slight throughput loss 
in comparison with three other partitioning and mapping 
algorithms, i.e. greedy, randomization and base Bi-Par.  

The current algorithm looks at BB of the program code 
for partitioning and migrations. In future work, we plan to 
extend our algorithm into lower level like instructions to 
fine-tune the energy-efficiency refinement step. 
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