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Abstract—The energy management of computer hardware 

mainly relies on primitives defined in the ACPI industrial 

standard. Network devices can borrow the same concepts as a 

basis for their energy-efficient design; however, to effectively 

tailor network processors for their specific applications, the set of 

energy-aware states defined by the ACPI and their parameters 

should be carefully chosen. In particular when designing network 

hardware, one should address the problem of optimizing 

parameter values (most often chosen in a discrete set) to trade-off 

energy efficiency and network performance. In this paper, we 

provide a methodology for such choice, by investigating this 

trade-off over a continuous spectrum of parameter values. This 

approach will allow us to gain insight in the behavior of the 

optimal solutions that achieve different desired tradeoffs. 

Keywords-Energy-efficiency; Network Processors; Power-

Performance Tradeoff. 

I.  INTRODUCTION 

The increasing processing capabilities
1

 of network 
processors (to be used in routing, switching and home-gateway 
devices), combined with the growth of networking and 
network-attached devices and with the related energy 
consumption, has spawned a number of investigations on the 
power management of these systems [1]. Among other 
solutions, dynamic adaptation techniques are a promising tool 
to achieve better network energy efficiency. 

Two basic mechanisms that can be jointly adopted in this 
respect are Low Power Idle (LPI) and Adaptive Rate (AR) [2, 
3]. The former puts the hardware into low power consumption 
states during idle periods; the latter exploits clock frequency–
power dependence, by adjusting the operating frequency when 
the processor is working. Both techniques are implemented by 
defining “energy-aware states” (corresponding to stable 
hardware configurations) that can be described by means of 
some parameters. More specifically, LPI requires the 
specification of power levels and wake-up times, whereas AR 
is described in terms of power levels and associated processing 
speeds. In computer hardware, dynamic adaptation techniques 
have long been used and are specified by the Advanced 
Configuration and Power Interface (ACPI) industrial standard 
[3]. Network devices can borrow the same concepts as a basis 
for their energy-efficient design; however, to effectively tailor 
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network processors for their specific applications (where 
quality of service constraints are much tighter than in general 
purpose processors), the set of energy-aware states defined by 
the ACPI and their parameters should be carefully chosen. In 
particular when designing network hardware, one should 
address the following question: which energy-aware states and 
corresponding parameter values should be implemented to best 
suit the requirements of networks in terms of both energy-
efficiency and performance related indexes?  

In this paper, we investigate the whole spectrum of possible 
variations, by adopting continuous parameter values. This will 
allow us to gain insight in the behavior of the optimal solutions 
that achieve different desired tradeoffs. In particular, instead of 
working with a predefined set of possible parameters 
characterizing AR and LPI (as is the case for general purpose 
hardware from many manufacturers following the ACPI 
recommendation), we want to determine the most suitable 
values for network-specific hardware (e.g., network processors, 
ASICs, FPGAs), which can then be passed along as guidelines 
to the electronic designer to pick the subset of discrete states 
that best approximate the desired behavior, providing that the 
cost overhead associated with dynamic adaptation is not in 
excess of the benefits achieved. 

The paper is organized as follows. We give an overview of 
energy-adaptation capabilities in CMOS devices in Section II. 
Section III introduces the tradeoff between power management 
and network performance, which is then specified for a packet 
processing engine model in Section IV. We state our 
parametric optimization problem in Section V. Section VI is 
devoted to the illustration and discussion of numerical results. 
Section VII contains the conclusions. 

II. ENERGY ADAPTATION PRIMITIVES 

In order to understand how adaptive green network 
technologies and relative HW implementations can be 
effectively designed and applied in next generation network 
devices, we have to take into consideration the main features of 
power management approaches in state-of-the-art HW 
technologies. Without losing of generality, this section 
introduces the main benefits and drawbacks of power 
management for the CMOS technologies. Such considerations 
can be easily extended to other technologies. The consumption 
of a CMOS circuit arises from two main contributions [6], 
namely leakage and dynamic power consumption: Φ = Φ������� +Φ	
� (1) 

The Φ	
�  contribution somehow represents the “ideal” 

power absorption of the circuit, since it is due to the real 



transition of CMOS logical states. In more detail, Φ	
� can be 

expressed as: Φ	
� = �	�	�	�		�  (2) 

where � is the logical state switching probability, � is the total 
transistor gate capacitance of the entire module, �		  is the 
supply voltage, and � is the clock frequency.  

It is well known that Φ�������  is becoming a dominant 

contribution in today’s silicon, and it results from imperfect 
cut-off of the transistors and causes power dissipation even 
without any switching activity. The Φ������� usually depends 

on many factors, like, for instance, the size of CMOS gates, the 
silicon operating temperature, the supply voltage �		 , etc. 
State-of-the-art approaches to reduce the dynamic and leakage 
power include a number of methods, like, among the others, 
Dynamic Frequency Scaling (DFS), Dynamic Voltage and 
Frequency Scaling (DVFS), and sleep transistors to shut off 
power during idle periods of execution [7] [8]. Regarding the 
DFS methods, acting on � allows linearly scale Φ	
� as shown 

in Eq. 2. However, it is worth noting that this operation results 
also in a decay of silicon performance and a consequent 
increase of elaboration times, since the � parameter is roughly 
proportional to the elaboration capacity (in terms of number of 
operations that can be performed per second). As far as DVFS 
techniques are concerned, as evident in Eq 2, lowering �		 
leads to a quadratic reduction in dynamic power. However, a 
reduction in voltage results in increased delay ( �	  – that 
roughly represents the time period that is required to move 
from one logical state to the other one) for the circuit [9]: �	 ∝ ������������ (3) 

where �� is the threshold voltage (used for distinguish the 
“1” and “0” logic levels), and � is the velocity saturation index 
which usually ranges between one and two.  

To lower the supply voltage without impacting the overall 
performance of a system, the system can run at a higher voltage 
during periods of high workloads and run at a lower voltage 
during periods of low workloads. Obviously, the system 
frequency needs to scale along with the voltage to ensure that 
the operating frequency does not exceed the switching speed of 
the circuit. In more detail, the relationship � < 1 �	⁄  has to be 
held for guaranteeing stable hardware operations. By observing 
Eq. 2, it is worth noting that the joint lowering of � and �		 
can yield to a cubic trade-off between Φ	
�  and the silicon 

performance, and further gains in the Φ�������  contribution. 

From a more general point of view, DVFS can be designed to 
act at different levels of granularity, from large modules of the 
circuit to individual logic blocks [10]. The smaller is the 
granularity, the more complex is the design and the larger the 
overhead. For example, the current trend towards multi-
processor architectures makes scaling on individual processors 
an attractive approach. Obviously, in order to support DVFS 
capabilities, a number of special HW modules, such as Voltage 
Regulation Modules (VRMs) and Clock Frequency Dividers 
(CFDs), need to be carefully included into the HW design. 

Sleep transistors specifically target Φ������� : cutting off 

power from the system during idle periods, sleep transistors 
can dramatically reduce leakage current [7] [8]. In such a case, 
the performance decay is mainly due to the time required to re-

load the circuit upon wake-up events. The larger is the 
equivalent capacitance � of the sleeping circuit, the longer will 
be the delay to recover its fully working conditions. So that, 
sleeping larger parts of a circuit allows dramatically savings, 
but at the cost of longer wake-up times. 

Owing to the techniques above mentioned, we can 
summarize that hardware (HW) power management allows 
saving energy by two main approaches: 

• During active periods: by reducing the elaboration 
capacity, and then increasing the elaboration times. Φ	
� 

scales in a linear way with respect to the elaboration 
capacity in case of DFS, and up to cubic relationship in 
case of DVFS. 

• During idle periods: by sleeping multiple modules at the 
cost of introducing delay for waking up the HW and 
starting the job execution. Idle sleeping approaches usually 
provide significant power savings, since they target both Φ	
� and Φ�������. 

Such two approaches are clearly considered by the ACPI 
standard for computing systems, and translated into two 
different sets of states: the performance (P-) and power (C-) 
states. When applied to network devices, they can be directly 
mapped into two main well-known concepts [2], namely 
Adaptive Rate (AR) and Low Power Idle (LPI), respectively.  

III. POWER MANAGEMENT VS NETWORK PERFORMANCE 

LPI and AR techniques have different impacts on packet 
forwarding performance. AR obviously causes a stretching of 
packet service times while the sole adoption of LPI introduces 
an additional delay in packet service, due to the wake-up times 
[2]. Preliminary studies in this field [11] showed how 
performance scaling and idle logic work like traffic shaping 
mechanisms, by causing opposite effects on the traffic 
burstiness level. The wake-up times in LPI favour packet 
grouping, and then an increase in traffic burstiness, while 
service time expansion in AR favours burst untying, and 
consequently traffic profile smoothing. Finally, the joint 
adoption of both energy-aware capabilities may not lead to 
outstanding energy gains, since performance scaling causes 
larger packet service times, and consequently shorter idle 
periods. It is worth noting that the overall energy saving and 
the network performance strictly depend on incoming traffic 
volumes and statistical features. For instance, idle logic 
provides top energy and network performance when the 
incoming traffic has a high burstiness level. This is because 
less active-idle transitions  are needed, and the HW can remain 
in a low consumption state for longer periods. 

IV. THE MODEL 

In order to represent an energy-aware packet processing 
engine with LPI and AR capabilities, we adopted the model in 
[5]. This model is founded on classical concepts of queuing 
theory, and it is specifically designed to estimate energy- and 
network-aware performance indexes. We assume to model the 
packet computation engine as a single server queuing system 
with maximum service rate 	μ. The μ service rate represents the 
device capacity in terms of packet headers that can be 
processed per second. We assume all packet headers requiring 
a constant service time. The model notation is introduced in 



TABLE 1. NOTATION DEFINITION. 

τ"� time needed to wake up the HW τ"## time needed to put the active HW into the sleeping state τ$��%& time to recover forwarding operation after the HW wakeup ' packet service rate Φ( power consumption when the server is active Φ)*+, power consumption when the server is sleeping  Φ-��.� power consumption during τ/00 and τ/1 periods 2 server vacation time, 2 = τ/1 + τ3,-45 + τ/00 6 rate of batch arrival 78 probability that an incoming burst contains j packets 7 average number of customer in a batch 9� stationary probability of having : ∈ <0, ?@  packets in the 

queuing system A traffic utilization A  of the server, which in the case of 

infinite buffer can be expressed as A = BCD  

TABLE 1. The selection of different AR and LPI 
configurations is supposed to impact on the performance in 
terms of both the packet service capacity, and wakeup times of 
the server. LPI configurations are bound with different values 
of both idle power consumption Φ)*+, and transition times τ"## 

and 	τ"� , needed to enter and to wake-up from idle modes, 
respectively. The deeper is a sleeping state, the larger is the 
transition period. Each AR configuration can be related with a 
different active power consumption Φ(, as well as a different 
packet processing capacity μ. Also in such case, the higher is μ, 
the larger is Φ( . Transitions between the active and the 
sleeping state are not instantaneous, and a transition time 2"## 

is required. When new packets are received, the server has to 
wake-up and returning to the active state (this requires a  2"� 
period). Furthermore, depending on the specific HW/SW 
architecture and implementation, an additional 2$��%&  is 

required to setup the packet elaboration process. The 
instantaneous power requirements can be expressed as follows: 

Φ = EΦ)*+,�CG�									if	the	server	is	idle	Φ(RPTU										if	the	server	is	activeΦ-�CG�																									if	waking	up	 (4) 

As in most HW platforms 2"## ≪ 2"�, in the model derived 

in [5], we neglect the 2"## period. 

A. Continuous relaxation 

We introduce a simple model to link network performance 
with power consumption indexes. In more detail, we express 
the energy consumption of the server when active and using 
AR techniques through the following empirical model [18]: Φ( = Φ�_�. ` Dabcdef +Φg_�.  (5) 

where μ_�.  represents the maximum packet forwarding 
capacity of the server, when no DFS or DVFS techniques are 
applied; Φ�_�.  is the energy consumption of the server when 
working at the maximum speed μ_�. ; the exponential 
parameter h  is meant to represent the different trade-offs of 
DFS and DVFS techniques (and it consequently ranges from 0, 
in case of no AR primitives available, to 3, in case of AR 
realized by means of the DVFS); Φg_�.  is the maximum power 
consumption when the HW is in idle state. It is worth noting 

that Φ(i(G  and Φ)i(G  roughly correspond to the maximum Φ	
� and Φ�������  contributions of Eq. 1, respectively, when 

no power management primitives are applied. In fact, Eq. 5 
implies that AR techniques may impact only on the dynamic 
part of circuit power absorption. Regarding the LPI primitives, 
we assume the energy consumption during idle periods to 
depend on τ as follows [19]: Φg = Φ( j�jkl	m�n (6) 

where o and p are parameters that express the implementation 
efficiency level of the LPI techniques. Suitable ranges for such 
parameters in real HW circuits for network devices are o ∈ <10q, 10r@ and p ∈ <0, 4@. 
B. The traffic model 

The modeling and the statistical characterization of packet 
inter-arrival times are well known to have Long Range 
Dependency (LRD) and multi-fractal statistical features [12]. 
However, as sustained more recently in [13] and [14], a Batch 
Markov Arrival Process (BMAP) can effectively estimate the 
network traffic behavior. Therefore, we decided to model 
incoming traffic through a BMAP with LRD batch sizes. We 
assume to receive groups of j packets at exponential inter-
arrival times with average value equal to 1/6. The sizes j of 
packet batches are supposed to follow Zipf’s law (which can be 
thought as the discrete Pareto probability distribution). 

C. The network- and energy-aware performance indexes 

The model we apply corresponds to a M
x
/D/1/SET queuing 

system [15]. Packets arrive in batches at Markov inter-arrival 
times with average rate 6, and are served by a single server at a 
fixed rate '. In order to take the LPI transition periods into 
account, the model considers deterministic server setup times. 
In more detail, when the system becomes empty, the server is 
turned off. The system returns operative only when a batch of 
packets arrives. At this point of time service can begin only 
after an interval 2 = τ"� + 2$��%& has elapsed. 

Under such assumption and as demonstrated in [5], the 

average packet waiting time uv  can be expressed as follows: 

uv = �wkBCwx�yzk yz{∑ C}8x}bcd}~y��jkBCw� + �x�Ck∑ C}8x}bcd}~y�BC�j���  (7) 

and the average power consumption as: 

Φv = ��c`y��k�m��j���w��ek�j���`w����ky���e�y�k�m  (8) 

This model has been validated with respect to SW router 
architectures based on COTS HW. The results outlined its good 
accuracy, since the maximum estimation error was lower than 
2% for both power consumption and packet latency times. 

V. THE OPTIMIZATION PROBLEM 

By using the expressions derived above, we can now state a 
parametric optimization problem to look for the optimal 

parameter settings (µ and τ) that minimize the average power, 
under a given Quality of Service (QoS) constraint (in terms of 
average packet processing delay). In practice, once known the 
traffic parameter values – which can be estimated in a router 
from the observation of the traffic traces – we would have a 
means of setting the corresponding optimal configuration of 
processor speed and idle state for the given workload, and of 
changing it upon a significant change in the workload, in an 



adaptive fashion. We are therefore interested in solving the 
following optimization problem: 

�minD,w Φvuv ≤ u∗ (9) 

Besides the performance constraint on the maximum 
average delay, there are other constraints to account for the 
maximum allowable utilization, the maximum processor speed, 
and the positivity of the HW wake up time; namely, A < 1,		' ≤ '_�.	and	2 ≥ 0	 �10�	

We can then write the following Karush-Khun-Tucker 
conditions for problem (9)-(10) given the array of multipliers � = ��j, ��, ��, ���: 

���
�
���∇Φ

v + �j∇uv + ��∇ρ + ��∇ ` Dabcde − ��∇	2"� = 0�jRuv −u∗U = 0	���ρ − 1� = 0								�� ` Dabcd − 1e = 0	��2 = 0																	
																																																										 (11) 

Considering the continuous version of the parameters has 
basically two advantages: (i) it allows us to make use of 
efficient and widely available numerical optimization 
techniques; (ii) it allows exploring the whole range of 
parameter values, thus providing guidelines for the design of 
new energy-efficient network HW (e.g., network processors, 
ASICs, FPGAs). Regarding the second point, it is worth noting 
that, though parameters will be eventually available in a 
discrete form after HW design, their values may be fixed 
and/or constrained during designing process. A careful analysis 
of the optimal points for various traffic load configurations can 
then be useful to suggest the most suitable parameter values to 
the electronic designer. 

VI. PERFORMANCE ANALYSIS 

Subsection VI.A analyzes the impact of AR and LPI 
efficiency. This analysis is devoted also to outline which values 
of ' and τ have to be applied to achieve the optimal savings 
while meeting QoS constraints. Starting from the results of this 
analysis, in subsection VI.B traffic load patterns from real 
network infrastructures are used for driving the proposed 
optimization problem. This gives us the opportunity of deeply 
understanding which energy aware configurations have to be 
made available in next-generation green devices in order to 
maximize their efficiency. All the tests reported in this section 
have been carried out by fixing the following parameters: 7 = 2 

pkts, u∗	= 50 μs, τ3,-45  = 0 s, Φ- = j�Φ( + j�Φ)*+, , Φ�_�. =Φg_�.  = 100 W, '_�. = 1.5 Mpps. 

A. The Impact of Green Technology Efficiency 

This subsection is devoted to analyze how the efficiency 
parameters of power management primitives impact on the 
overall power savings and on which values of ' and τ have to 
be applied to achieve the optimal savings. To this purpose, 
subsections 1 and 2 introduce a parametric analysis of AR and 
LPI performance, respectively. 

1) Adaptive Rate Technologies 
Figures 1 and 2 report the results of the optimization 

framework in terms of average power consumption and optimal 

values of ' and τ with respect to increasing traffic load and γ. 
In more detail, we considered four different cases, namely γ = 
0 (no AR optimizations), γ = 1 (AR optimizations by means of 

DFS), γ = 2 (AR optimizations by means of DVFS with α=1 in 

Eq. 3), and γ = 3 (AR optimizations by means of DVFS with 

α=2 in Eq. 3). In the performed tests the LPI primitive is 
enabled, and parameterized with the following “high 
performance” configuration: δ = 4, and χ = 10

7
. As one can 

expect, the higher is the γ value, the lower is the average 
energy consumption. The energy gains start differing according 
the γ values as incoming traffic load increases. This is a clear 
effect of the presence of LPI primitives, which are for sure the 
dominant energy-aware primitive for low values of traffic load. 

The consumption does not scale in a linear way with the γ 
increase: in the presence of LPI, AR through DFS (γ = 1) 
allows additional energy savings of less than ∿3-5% with 
respect to the case with only the LPI primitive available (γ = 0). 
Both the DVFS cases (γ = 2 and γ = 3) allow significant 
savings by cutting the average power absorption up to ∿20% 
and ∿27% with respect to the only LPI adoption. Figure 2 
reports how the '  and τ  values guaranteeing the optimal 
solution of the proposed optimization problem move with 
respect the incoming load for all the considered γ values.  

 
Figure 1. Average power consumption versus the incoming traffic load 

provided by the proposed optimization framework and according to 

different γγγγ values. 

 
Figure 2. Locus of the extremal points provided by the proposed 

optimization framework and according to different γγγγ values and incoming 

traffic loads. 

The markers on the curves are placed at steps of 20 kpps of 
the incoming load. The first marker for each γ curve 
corresponds to a load equal to 20 kpps, and results in values of τ larger than 350 ns. As the incoming traffic load increases, 
optimal τ  starts decreasing at an exponential pace, and gets 
very near to 0 s for incoming loads larger than 60-70% of '_�.. At a first glance, optimal ' values exhibit a quite strange 
behavior: for low incoming traffic volumes (less than 3% of '_�.), high service capacities (more than 1 Mpps) are chosen. 
The same service capacity values are chosen also when 
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incoming traffic overcomes ∿50% of '_�. . Indeed, this 
seemingly strange behavior is due to the well-known race-to-
idle effect [16]. This effect implies that for low traffic loads is 
more convenient serving traffic at higher speeds in order to 
maximize the idle time, and using an aggressive LPI 
configuration. As the traffic load overcomes 3% of '_�., the 
optimal values of ' start decreasing since the efficiency of AR 
techniques becomes relatively comparable to the one of the LPI 
primitive. Then, near to 50% of '_�., the optimal values of ' 
change their trend, and starts to rapidly increase in order to 
assure the QoS constraints. It is worth noting that the larger is 
γ, the lower are the more frequent values chosen for ' . 
Moreover, while the DFS provides very high ' values (often 
equivalent to '_�.), the two DVFS cases (γ = 2 and γ = 3) 
provide similar optimal ' and τ values. 

2) Low Power Idle Technologies 
In order to evaluate the LPI potential impact, we analyzed 

two main study cases similar to the one in the previous 
subsection. In the former, the performance analysis is 
performed by varying the δ parameter, the latter by varying the χ one. In both the examined cases, we fixed γ = 3 and χ = 10

7
.  

Figures 3 and 4 show the average consumption and the 
locus of optimal '  and τ  values, respectively, according the 
incoming load and for various δ values. The case δ = 0 
corresponds to the absence of LPI optimization. The cases δ = 
1, 2, 3, and 4 to increasingly efficient implementations of the 
LPI primitive (i.e., guaranteeing lower and lower Φg  as δ 
raises). LPI primitives allow saving in the presence of low 
incoming traffic volumes: up to 75% for δ = 1 and up to 95% 
for δ = 4 with respect to the case of no LPI optimizations 
available. Such power gains quickly decrease with respect to 
the traffic load, and become negligible when the load overcome ∿35% of '_�..  

By observing Figure 4, we can note how δ mainly impacts 
on the optimal configurations in the presence of low traffic 
volumes. The more efficient is the LPI primitive, the more 
evident the race-to-idle effect becomes (i.e., higher '  values 
are chosen at low loads as δ increases). Regarding the case with 
δ = 0, the race-to-idle effect is obviously not present, and the 
optimal ' values linearly increase with the load.  

Finally, Figures 5 and 6 report results similar to the 
previous case, but according to various χ values (γ and δ were 
fixed to 3 and 4, respectively). The χ parameter represents 
somehow the responsiveness of the LPI primitives. Fixed τ, the 
larger is χ, the lower is Φg. The potential impact of χ is evident 
in Figure 5: as the value of this parameter increases, as the 
energy gain due to the LPI primitives becomes more significant 
also for higher incoming traffic loads. In case of χ=5 10

7
, the 

LPI implementation becomes so efficient that the power 
consumption increases even in a linear way with respect to the 
load, and the optimal values of ' and τ appear to be limited to 
very narrow ranges (Figure 6), too. As far as the other χ values 
are concerned, Figure 6 exhibits optimal configurations with 
very similar behavior to the ones obtained in Figure 4. 

B. The Impact in the Presence of Real Network Utilization 

This section aims at understanding which values of optimal 
parameter would be most likely to occur in real operator 
networks. To this purpose we used typical link utilization 

profiles of three network operators, namely Telecom Italia, 
GRNET and NASK as reported in [17], and shown in Figure 7. 

 
Figure 3. Average power consumption versus the incoming traffic load 

provided by the proposed optimization framework and according to 

different δ values. 

 
Figure 4. Locus of the extremal points provided by the proposed 

optimization framework and according to different δ values and 

incoming traffic loads. 

 
Figure 5. Average power consumption versus the incoming traffic load 

provided by the proposed optimization framework and according to 

different χ values. 

The AR and LPI parameters have been fixed as follows: γ = 
3, δ=4, and χ = 10

7
. Figures 8 and 9 show the normalized 

cumulative occurrences of the optimal values of '  and τ as 
obtained from the optimization framework and the probability 
distribution of link utilizations in Figure 7 for all the three 
considered network operators. Such results outline how the 
ranges of the selected values of ' and τ are similar in all the 
three cases, and relatively narrow (e.g., the selected ' values 
correspond to less than 13% of the available ones). The 
estimated power savings by the optimization framework 
obviously depend on the average link utilization; so that the 
gains of Telecom Italia case is a bit lower than the other two 
cases, since its reference network links exhibit higher 
utilization. However, the obtained figures are quite impressive 
since estimated average savings from 67% up to 83% with 
respect to the case of no energy optimizations. 

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000

ϕ
[W

]

Offered  Load [kpps]

δ=0
δ=1
δ=2
δ=3
δ=4

0.0E+00

1.0E-07

2.0E-07

3.0E-07

4.0E-07

0 500 1000 1500

τ
 [

s]

µ [kpps]

δ=3
δ=2
δ=1
δ=0
δ=4

0

50

100

150

200

0 200 400 600 800 1000

ϕ
[W

]

Offered  Load [kpps]

χ=5E5
χ=1E6
χ=5E6
χ=1E7
χ=5E7



 

Figure 6. Locus of the extremal points provided by the proposed 

optimization framework and according to different χ values and incoming 

traffic loads. 

 

Figure 7. Probability distribution of the link utilization in some 

representative links of Telecom Italia, GRNET and NASK. 

 

Figure 8. Normalized cumulative occurrences of the optimal values of � 

for all the three considered network operators. 

 

Figure 9. Normalized cumulative occurrences of the optimal values of   

for all the three considered network operators. 

VII. CONCLUSIONS 

We have considered the problem of choosing the optimal 
configuration of a network packet processor in order to 
minimize power consumption under a given performance 
constraint. The configuration is sought in terms of a couple of 
parameters that characterize the AR and LPI mechanisms: 
processing speed and wakeup time when exiting sleep mode. 
Instead of starting with a given (discrete) set of values for these 
parameters (as set by the manufacturer for a given piece of 

hardware), among which to seek the optimum for a certain 
traffic load, we have investigated the energy-performance 
tradeoff over a continuous parameter range. The loci of the 
optimal points give clear indications on the hardware settings 
that would best fit specific load values, which can be a valuable 
input to the electronic designer of network processing engines. 
We have characterized the opportunity of adopting DFS or 
DVFS techniques in terms of their potential energy saving in 
both AR and LPI. An indication of the optimal values that 
would be most likely to occur in real operator networks has 
also been given. 
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