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Abstract—Energy efficiency is well-known to have recently
become one of the most important aspects for both today’s
and tomorrow’s telecommunications infrastructures. To curb
their energy requirements, next-generation hardware platforms
of network devices are expected to include advanced power
management capabilities, which may allow a dynamic trade-off
between power consumption and network performance. At the
same time, network protocols are going to evolve in order to
carry energy-aware information, and to add them to classical
performance indexes in network optimisation strategies. However,
the question of how to map energy-aware indexes, often arising
from low-level local hardware details, and the ones related
to network performance is still an open issue. Starting from
these considerations, we propose the Green Abstraction Layer
(GAL), a device internal interface that provides a standard
way of accessing and organising energy-aware information from
the low-level hardware components to control processes. The
GAL is specifically designed to hide the heterogeneous hardware
implementation details, and to provide a simple, hierarchical,
and common view of underlying power management capabilities
to network control processes.

I. INTRODUCTION

Network user traffic and router capacities are exponentially
increasing. However, they are not compensated by a corre-
sponding increase in silicon energy efficiency. Besides, the
vast majority of currently deployed network links and devices
are designed to operate (and, consequently, to consume power)
constantly at their maximum capacity, irrespectively of the
traffic load, even though their average utilisation lies far below
the maximum [1], [2], [3].

These observations have suggested the possibility of adapt-
ing network energy consumption to the actual traffic profiles
[4], [5]. Just similarly to general purpose computing systems,
such possibility can be realised by including Power Man-
agement Primitives (PMPs) into the hardware platforms of
networking devices, where energy absorption physically takes
place.

PMPs allow aggressively modulating the energy consump-
tion of networking devices or some parts of them, by putting

them into standby states when not in use, or by decreasing
their maximum performance in the presence of low incoming
traffic volumes. On one hand, the best performance is provided
when the device operates under no power limitation. On the
other hand, it might be noted that the maximal power saving
is obviously obtained when the equipment is turned off. Under
such a condition the performance is actually zero.

With the above understanding, it is clear that power-
managed devices need control loops able to dynamically
tune hardware capabilities to provide the required Quality of
Service (QoS) level to incoming traffic with the minimal power
consumption.

It is also worth noting that PMPs are features locally
available in network nodes, and their efficiency may heavily
depend on the specific implementation and low-level details
of the hardware platforms of devices; the latter may be quite
heterogeneous, even when considering equipment of the same
market segment or vendor.

Owing to such considerations, providing each network
device with its own independent control loop - or Local
Control Policies (LCP) - would appear an obvious choice.
On the basis of the specific features of the local device,
control loops may dynamically orchestrate the configuration of
internal components (e.g., line-cards, link interfaces, network
processors, etc.) to meet the desired QoS with the minimum
power consumption. However, when energy optimisations are
independently performed by each device, the overall network
consumption might result much higher than in the case of
cooperation among nodes. Along this direction, a number of
approaches [6], [7], [8], [9] have been recently proposed in
order to extend current routing and traffic engineering poli-
cies beyond classical network QoS metrics, and to explicitly
consider also energy consumption of the whole network.

Even if potentially much more effective than LCPs,
Network-wide Control Policies (NCPs) suffer from some
drawbacks. First, NCPs can exhibit much higher feed-
back/convergence delays. Secondly, routing and traffic engi-



neering frameworks generally may not have the ability of
discriminating how logical network entities can be mapped on
physical resources, which directly cause energy absorption.
Finally, NCPs often represent a network device simply as a
node in a graph, whose arcs are the (virtual/physical) network
links.

Such simplistic representation does not allow maintaining
the knowledge of some hardware peculiarities that may be
very important for reducing consumption.

All these points suggest the possibility of jointly adopting
LCPs and NCPs in order to optimise the device energy
consumption in a hierarchical way.

Starting from the considerations mentioned above, it is
easy to conclude that there is still a significant gap between
hardware power management and NCPs, as well as some open
issues on which control loops should be adopted, and on
how effectively managing the relationships among multiple
(local and/or network-wide) control loops. Besides devising
new energy-aware LCPs and NCPs, an almost necessary
condition for their effective development and adoption is
that of representing management and control actions and
device/network status information in some standard abstract
form, independently of the details of the specific manufactur-
ers’ implementations.

The main contribution of the present paper consists in
the specification of a layer that provides a way to expose
green networking capabilities of devices toward the network
control plane. Such layer consists of a novel standard interface,
the Green Abstraction Layer (GAL) [10], conceived by the
ECONET consortium [11]. Within the GAL we define the
Green Standard Interface (GSI), which is a simple interface
for exchanging power management data among data-plane
elements and processes realising control plane strategies, in
a standard and simplified way. This paper will identify and
design standard interfaces to control, configure and monitor
energy-aware elements in network devices.

In more detail, the paper is organised as follows: Section
II will define the GAL architecture. Section III introduces the
GSI, a platform-independent interface that works at different
detail levels and that can be applied for control and data-
planes intercommunication as well as for intra-data-plane noti-
fications. Section IV describes the GSI command set suitable
to manage network resources of the ECONET platform. A
concrete example of mapping the GAL onto an NetFPGA
environment is shown in Section V. Finally, Section VI ends
the paper with conclusions and future research directions.

II. GREEN ABSTRACTION LAYER ARCHITECTURE

The GAL architecture was conceived as a modular and
easily extendable software framework. The GAL architecture
aims at two main objectives:

• to provide interface capabilities towards heterogeneous
hardware;

• to provide multiple hierarchical interfaces towards control
processes in order to permit energy configurations at more
detail levels of the internal architecture of a device.

In order to divide and conquer such complex aspects and
internal interactions, the ECONET consortium designed the
GAL to provide a hierarchical representation of network
devices, by specifying their components at the various levels
in terms of abstract entities.

As shown in figure 1, the GAL hierarchical architecture
permits to address each resource of the ECONET platform by
using a simple layering schema. Figure 1 depicts four possible
layers:

• Layer 1 groups and manages “Device entities”, repre-
sented in the figure by network nodes;

• Layer 2 groups and manages “Chassis entities” repre-
sented in the figure by shelves;

• Layer 3 groups and manages “Line card entities” repre-
sented in the figure by boards;

• Layer 4 groups and manages “Hardware components
entities” represented in the figure by basic components,
such as ports, fans, chips, etc.

Figure 1 also shows the GSI on top of each manageable
entity, as well as LCPs operating towards the data-plane,
depicted in the figure by the Convergence Layer.

III. GREEN STANDARD INTERFACE

The GAL provides two interfaces: a) the GSI, which is the
external or public interface used to interact with clients and
applications, and b) an internal interface named Convergence
Layer (CL) towards the data-plane. The GSI is the northbound
interface of a GAL instantiation. It is expected to be used by
three main sets of control plane processes:

• LCPs, conceived to optimise the configuration of the
device in order to achieve the desired trade-off level
between energy consumption and network performance
according to the incoming traffic load;

• NCPs to autonomically control and optimise the be-
haviour of a network (conceived as a set of devices).
Typical examples of these kinds of policies are traffic
engineering, routing and signalling algorithms/protocols
(e.g., OSPF-TE/RSVP-TE) with “green” extensions;

• Monitoring and Operation Administration & Manage-
ment (OAM) to control and optimise the behaviour of
a network manually, as Network Management systems
with “green capabilities”.

The GSI provides a set of commands to setup the power
management and monitoring of a wide set of energy-aware
resources and network devices. In other words, the GSI allows
accessing energy-aware resources to discover their power char-
acteristics and to deal with their provisioning, configuration,
monitoring, and decommissioning.

The CL represents the platform-specific functionalities (in
terms of messages, commands and attributes) that work di-
rectly with the device, and it offers the GSI a common basis
upon specific architectures.

IV. GSI COMMAND SET

Even though each specific GSI implementation would de-
pend on the internal architecture of the device (e.g. network
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Fig. 1. The Green Abstraction Layer (GAL) hierarchical architecture depicting the different layers of network components, the Green Standard Interface
(GSI), the Local Control Policies (LCP), and the convergence layer towards the data-plane.

elements, network cards, chips, fans, etc.), in this paper we
propose a set of abstract commands to enable the GSI to op-
erate. The main functionalities offered by the GSI commands
are the following:

• Discovery: used to retrieve information about the state,
the power consumption and the availability of the physi-
cal device;

• Provisioning: allows the energy-consumption configura-
tion (activation) of a physical device through the selection
of one among the energy-aware states (EASs) offered by
the device driver (entity driver);

• Monitoring: permits monitoring of relevant parameters
(state, power consumption, etc.) of the physical device;

• Release: allows the energy-consumption release (de-
activation) of already configured physical devices. After
release, the device should operate its default configura-
tion.

GSI commands may be forwarded directly to the CL or to
a GAL entity. As shown in figure 1, GSI commands should
be forwarded directly to the CL if the manufacturer decides
to give no details of the internal hardware architecture, or
if the physical resource does not require or provide a LCP.
Organising the internal hardware architecture at different levels
permits the GSI commands to flow through different GAL
entities, where LCPs are applied. At the very end of this
hierarchical organisation, all GSI commands should reach the
CL in order to perform the corresponding operation.

Attributes and parameters of the GSI command set, as well
as the data types used by these commands, are deeply analysed
in the following sub-sections.

A. Discovery Command

The discovery command permits to retrieve informa-
tion related to the physical infrastructure organisation
and energy management features. The command is called
GAL_Discovery and performs a synchronous discovery of



entity capabilities and characteristics. Implementations of this
command should be aligned with the following reference
model:

GAL_Discovery ( ResourceID, Profile ) :

IN ResourceID GAL_ID unique resource
identification

OUT Profile GAL_PROF discovery entity container
OUT retval GAL_INT GAL_SUCCESS when it was

possible to discover the
entity

OUT retval GAL_INT GAL_ERROR when an error
occurred during the
discovery operation

OUT retval GAL_INT GAL_NOT_IMPLEMENTED if the
command is not implemented

The Profile output parameter provides information re-
garding the energy consumption profile of the queried entity
as well as the existence of other entities attached (children).

B. Provision Command

The provision command permits to configure an individ-
ual resource or a group of resources. The GSI provides
two provisioning commands: GAL_Provision, which per-
forms the synchronous configuration of a single entity, and
GAL_RProvision, which performs a synchronous and re-
cursive configuration of all entities connected to the target
entity identified by the ResourceID parameter. Implementa-
tions of these commands should be aligned with the following
reference model:

GAL_Provision ( ResourceID, State ) :

IN ResourceID GAL_ID unique resource
identification

IN State GAL_INT energy state the device
should operate in

OUT retval GAL_INT GAL_SUCCESS when it was
possible to provision the
entity

OUT retval GAL_INT GAL_ERROR when an error
occurred during the
provision operation

OUT retval GAL_INT GAL_NOT_IMPLEMENTED if the
command is not implemented

GAL_RProvision ( ResourceID, State ) :

IN ResourceID GAL_ID unique resource
identification to use as
root

IN State GAL_INT energy state the devices
should operate in

OUT retval GAL_INT GAL_SUCCESS when it was
possible to provision the
entity

OUT retval GAL_INT aggregated error codes
when at least one error
occurred during the
provision operation

OUT retval GAL_INT GAL_NOT_IMPLEMENTED if the
command is not implemented

The aggregated error code returned by the
GAL_RProvision command should represent the errors

occurred on the target entity and on the other entities
connected to the first one.

C. Monitor Command

The monitor set of commands permits to monitor
the energy parameters and values of an individual re-
source or a group of resources. There are three com-
mands to monitor entities: GAL_Monitor_Consumption,
which returns the energy consumption of a single entity,
GAL_Monitor_RConsumption, which returns the accu-
mulated value of the energy consumption of a group of entities,
and GAL_Monitor_State, which returns the current power
state of the device. Implementations of these commands should
be aligned with the following reference model:

GAL_Monitor_Consumption ( ResourceID, Power ) :

IN ResourceID GAL_ID unique resource
identification

OUT Power GAL_INT energy consumption in
mWatts

OUT retval GAL_INT GAL_SUCCESS when it was
possible to monitor the
entity

OUT retval GAL_INT GAL_ERROR when an error
occurred during the
monitor operation

OUT retval GAL_INT GAL_NOT_IMPLEMENTED if the
command is not implemented

GAL_Monitor_RConsumption ( ResourceID, Power ) :

IN ResourceID GAL_ID unique resource
identification to use as
root

OUT Power GAL_INT sum of the energy
consumption of all child
devices in mWatts

OUT retval GAL_INT GAL_SUCCESS when it was
possible to monitor all
the entities

OUT retval GAL_INT aggregated error codes when
at least one error occurred
occurred during the
monitor operation

OUT retval GAL_INT GAL_NOT_IMPLEMENTED if the
command is not implemented

The Power output parameter of the GAL_RConsumption
is the sum of the power consumption of the entity target by the
ResourceID parameter plus the power consumption of the
entities connected to the first one. Moreover, the aggregated
error code returned by the GAL_RConsumption command
should also represent the errors occurred on the target entity
and on the other entities connected to the first one.



GAL_Monitor_State ( ResourceID, State ) :

IN ResourceID GAL_ID unique resource
identification

OUT State GAL_STATE operational state of the
device

OUT retval GAL_INT GAL_SUCCESS when it was
possible to monitor the
entity

OUT retval GAL_INT GAL_ERROR when an error
occurred during the
monitor operation

OUT retval GAL_INT GAL_NOT_IMPLEMENTED if the
command is not implemented

D. Release Command
The GAL_Release synchronous command permits to

eliminate any special energy-aware configuration from a given
entity. Implementations of the GAL_Release command
should be aligned with the following reference model:

GAL_Release ( ResourceID ) :

IN ResourceID GAL_ID unique resource
identification

OUT retval GAL_INT GAL_SUCCESS when it was
possible to release the
entity

OUT retval GAL_INT GAL_ERROR when an error
occurred during the
release operation

OUT retval GAL_INT GAL_NOT_IMPLEMENTED if the
command is not implemented

E. Data Types
There are five data types the GSI commands use: GAL_ID,

GAL_INT, GAL_PROF, GAL_STATE and GAL_CHILD.
These data types have been specified in order to provide a
compatibility layer to different implementations. This com-
patibility layer avoids common implementation errors such
as integer sizes and architectural byte ordering, commonly
known as Little-Endian and Big-Endian. Table I presents the
basic data types and their sizes. GAL_PROF, GAL_STATE and
GAL_CHILD complex data types are specified underneath:

GAL_PROF :

num_states GAL_INT number of states
states GAL_STATE array of states
num_children GAL_INT number of children
children GAL_CHILD array of children

GAL_STATE :

index GAL_INT index of the state
perf_pkt GAL_INT average packets per second
perf_bdw GAL_INT average bandwidth in bytes per

second
perf_lat GAL_INT average latency in µ sec
pwr_min GAL_INT minimum power consumption in

mWatts
pwr_avg GAL_INT average power consumption in

mWatts
pwr_max GAL_INT maximum power consumption in

mWatts
trans_up GAL_INT transition time to the state

above
trans_down GAL_INT transition time to the state

below

TABLE I
DEFINITION OF BASIC DATA TYPES USED IN THE GSI.

GAL Type # of Bytes Signal C/C++ Equivalent
GAL_INT 32 unsigned uint 32t
GAL_ID 256 — char[256]

GAL_CHILD :

index GAL_INT index of the child
child_id GAL_ID child’s unique resource

identification

V. THE NETFPGA 1G BOARD: A CASE STUDY

This section provides a brief description of a possible inte-
gration of a NetFPGA [12] device into the GAL architecture.

The NetFPGA router is an open reprogrammable hardware
platform that is increasingly being used by networking re-
searchers world-wide to rapidly prototype and evaluate new
mechanisms. Hosted on the board are: a user-programmable
FPGA (with two PowerPC processors), SRAM, DRAM, and
four 1 Gbps Ethernet ports1. The FPGA directly handles
all data-path switching, routing, and processing operations
of Ethernet frames and Internet packets, leaving software to
handle control-path functions only.

The GSI is in charge of providing the command set neces-
sary to setup the power management and monitoring of a wide
set of NetFPGA energy-aware resources and components. In
other words, the GSI is used for: a) accessing and discovering
NetFPGA resources and their power characteristics, b) auto-
nomic provisioning and manual configuration of NetFPGA re-
sources, c) monitoring, and d) decommissioning the NetFPGA
components from energy-aware configurations.

The set of messages, their functionalities and workflow of
the command set exposed by the GSI to the GSI clients are in
line with the NetFPGA architecture. The NetFPGA resources
manageable through the GSI and shown in figure 2 are the
following:

• Entity 1: an abstraction to all the physical entities of the
NetFPGA board;

• Entity 1.1: the FPGA chip, which provides frequency
scaling capability [13];

• Entity 1.2: an abstraction to the four 1 Gbps Ethernet
ports;

• Entities 1.2.1, 1.2.2, 1.2.3 and 1.2.4: the physical 1 Gbps
Ethernet ports.

By benchmarking energy performance of this platform,
it becomes possible to quantify energy saving achieved by
applying new mechanisms for improving power efficiency
[13]. This information is also used to fill the LCPs internal
tables that provide the NetFPGA power consumption profile.

VI. CONCLUSIONS

In this paper we proposed a novel architecture and interfaces
enabling the Green Abstraction Layer, to export data-plane

110 Gbps Ethernet ports are already available in the newer version.
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Fig. 2. NetFPGA 1G board according to the GAL architecture perspective.

energy-aware capabilities from network devices toward the
Control Plane.

In this work, we have outlined the definition of two inter-
faces, the Green Standard Interface, which is the “external”
interface used to interact with clients and applications and an
internal interface (Convergence Layer).

Finally we have described the hierarchical architecture of
the GAL, and provided a functionally complete set of primi-
tives, useful for the management of resources in the ECONET
platform.
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