
NetFPGA Hardware Modules for Input, Output

and EWMA Bit-Rate Computation

1Alfio Lombardo, 2Diego Reforgiato, 2Vincenzo Riccobene, 1Giovanni Schembra
1Dipartimento di Ingegneria Elettrica, Elettronica e Informatica

1University of Catania
2LightComm s.r.l.

Email: 1{alfio.lombardo, schembra}@dieei.unict.it,
2{diego.reforgiato, econet}@lightcomm.it

March 21, 2012

Abstract

NetFPGA is a hardware board that it is becoming increasingly pop-
ular in various research areas. It is a hardware customizable router and
it can be used to study, implement and test new protocols and tech-
niques directly in hardware. It allows researchers to experience a more
real experiment environment. In this paper we present a work about
the design and development of four new modules built on top of the
NetFPGA Reference Router design. In particular, they compute the
input and output bit rate run time and provide an estimation of the in-
put bit rate based on an EWMA filter. Moreover we extended the rate
limiter module which is embedded within the output queues in order
to test our improved Reference Router. Along the paper we explain in
detail each module as far as the architecture and the implementation
are concerned. Furthermore, we created a testing environment which
show the effectiveness and efficiency of our modules.

1 Introduction

The NetFPGA [11] is an accelerated network hardware that augments
the functions of a standard computer. It provides an open router
with four 1 Gbps Ethernet ports largely used in the research com-
munity, to develop and test innovative networking solution on a real
environments. At the center of the NetFPGA board is a Xilinx FPGA
device. Surrounding the FPGA are four memory devices, two Static
RAMs (SRAMs) and two second-generation Double Date Rate (DDR2)

1



SDRAM devices. On the left side of the platform, a quad-port physical-
layer transceiver (PHY), that enables the platform to send and receive
packets over four standard twisted-pair Ethernet cables, is provided.
On the right side of the board, two Serial ATA (SATA) connectors on
the platform allow multiple NetFPGAs within a system to exchange
data at high speeds without using the PCI bus. The NetFPGA core
clock works at 125 MHz, meaning that each clock cycle lasts 8 ns.
The FPGA directly handles all data-path switching, routing, and pro-
cessing operations of Ethernet frames and Internet packets, leaving
software to handle control-path functions only [19]. The NetFPGA
fits into a host PC via a PCI slot. Software and gateware (Verilog
HDL source code) packages are available for download under an open
source license from the NetFPGA website [1].

Working with NetFPGA platform, a developer can either imple-
ment its own project or extend existing ones in order to augment their
functionalities. Therefore, this allows jump starting prototypes and
quickly building on existing projects already developed in the NetF-
PGA (see the NetFPGA project page [2]). One of the main NetFPGA
projects, the Reference Router [3], is a complete IPv4 router which is
able to simultaneously forward packets from all four 1 Gbps interfaces
on the NetFPGA card.

The NetFPGA board is programmable using the Verilog language.
Each time a new or extended Verilog project is completed, it can be
uploaded on the board using appropriate software tools released with
the platform. Of course, it is required a communication between the
NetFPGA board and the host computer especially if the latter has to
show some current results of the board to the user. This is accom-
plished through the use of the Register System [4], which is a standard
set of registers that can be used by hardware and software modules
to read and write data and, consequently, to exchange data between
them. These registers contain some parameters for general use, typi-
cally used in order to control and monitor the platform in almost all
aspects. The Register System provides a mechanism for:

• specifying the registers supplied by each module;

• specifying the modules used by each project;

• generating a register map/memory allocation for each project.

Information for each project (eg. name, list of modules, location
of modules in memory space) and each module (eg. name, list of
registers) is specified in an XML file. The register generation tool,
provided within the platform, reads the XML file of the project and
the XML files of the included modules, performs memory allocation,
and then outputs a set of files with the memory allocation/register
map to files for use in Verilog, C, and Perl.

2



For example, one of these registers (the CPCI CNET CLK SEL REG
register) is responsible for the NetFPGA core clock. Its setting allows
to switch the NetFPGA core clock from 125 MHz to 62.5 MHz and
vice-versa. Registers provide several information about the underly-
ing project loaded into the NetFPGA board. For example, as far as
the Reference Router project is concerned, registers provide various
information such as the number of bytes or packets received within the
input and output queues, the number of dropped packets within the
input and the output queues, the number of packet waiting into the
input and output queues, etc.

However, important information is still missing within the registers
and in order to compute that, one has to carefully change the origi-
nal design, find the required signals from the Verilog code (it may be
needed some hardware computation according to what kind of infor-
mation is required), and output those in new ad-hoc registers if they
need to be read or write from software. For example, one could be
interested in the effective input bit rate into the input queues, the ef-
fective output bit rate from the output queues, or an estimation of the
input bit rate: in fact, a large set of applications may require that kind
of information.

As far as the bit rate computation is concerned, it is necessary to
read the number of bits received in a certain time window. The number
of bytes or packets received to the Reference Router is an information
provided within the NetFPGA registers and accessible from the soft-
ware using C or PERL or bash script commands. However, reading
hardware registers from the software takes about 500 µs whereas the
board works at 8 ns per cycle. Thus, if we want to accurately compute
the input bit rate from software, we would need to read the number of
bytes received within the input queues each T µs (with T much higher
than 500 to not incur in errors caused by time delays of software reads).

Therefore, in order to efficiently and precisely compute the input
and output bit rate it is necessary to add some hardware modules
to the original Reference Router design. This allows to work in the
nanoseconds domain rather than microseconds. These modules handle
important signals from the user data path and according to the current
clock rate compute efficiently and accurately the input bit rate, the
output bit rate and the exponentially weighted moving average input
bit rate. Moreover, we have extended the original rate limiter module
by adding a more fine-grained limit range for the output bit rate, in
order to create the same conditions when a congestion occurs and test
our modules accordingly.

In this paper we have built on top of the Reference Router project
four Verilog modules which work in parallel with respect to the original
pipeline. The four modules are:

3



1. the Input Bit Rate Calculator;

2. the Output Bit Rate Calculator;

3. the EWMA Bit Rate Calculator.

4. an extension of the original rate limiter module.

The first and the second of them are used to compute the current
input and output bit rate, whereas the third is used to estimate the
input traffic bit rate through an exponentially weighted moving average
filter. The forth module is an extension of the original rate limiter
module which lies within the Output Queues and it allowed us to test
the other modules.

This paper is organized as follows. Section 2 discusses some related
works within the NetFPGA platform that have built on top of the Ref-
erence Router. Section 3 describes the architecture we have designed
as well as the technical details of each implemented module. Section 4
gives the details of the experiments we have carried out, our network
topology and how we have tested our modules. Section 5 compares
the device utilization of the Reference Router design with that of our
modules. Finally, Section 6 ends the paper with conclusions and future
directions where we are headed.

2 Related Work

Since its release, the NetFPGA has been enhanced and improved with
several modules and standalone projects for different applications. In
this section we will briefly list the main and most recent projects that
have been created on top of the Reference Router.

In [8] the Reference Router has been augmented for real-time ex-
traction of URLs from packets. This implementation modifies the gate-
ware to filter packets containing a HTTP GET request and sends a
copy to the host. Host software is implemented to extract URLs and
search terms. The software integrates with a database facility and a
GUI for offline display of web-access and search term profiles. On the
same topic, authors in [15] proposed a hardware-based HTTP GET
flooding detection and defense system, which can protect a given web
server farm by filtering out malicious HTTP requests based on the
difference of the behavior between normal browsers and bots.

The work done in [21] describes a traffic monitor system imple-
mented on the NetFPGA Reference Router. It allows network packets
to be captured and analyzed from up to all four of the Gigabit Eth-
ernet ports. Moreover, a developed graphical user interface shows the
traffic of any port. The same authors, in [20], built a system in order
to hijack the incoming packets according to rules specified by the user
through ad-hoc NetFPGA registers. This means that the authors were

4



able to change any field of any incoming packets. Certainly, depending
on whether they are changing TCP or IP header fields, they need to
recompute the TCP or IP checksum and store them back into the net-
work packets. Their implementation works at user data path level and
modifies packet fields if certain conditions defined by the user through
NetFPGA registers are satisfied.

In many mission critical real-time networked systems, such as those
used in financial institutions, incoming data (such as market feeds) is
brought in on redundant links. These links are generally provided
by separate providers for maximum redundancy. Although the data
on both of these links is expected to be the same, there are delays
and packet losses that can be different. In [13] the authors describe a
NetFPGA module which can accurately measure these delays to help
the institutions to evaluate the quality of service provided to them by
their vendors.

Authors in [23] have proposed a light-weight queue management
scheme to tackle the problem of bursty traffic. This scheme was called
bounded jitter policy and has been evaluated using testbed experi-
ments on NetFPGA. Basically, the Reference Router was changed so
that each packet is stored in the SRAM immediately after arrival.

Furthermore, authors in [22] presented an implementation of a
Crosspoint-Queued switch output controller on the NetFPGA where
the output controller is a part of design that implements functionality
of Crosspoint Queued Ethernet switch and it performs a scheduling
algorithm on the crosspoint buffers. Round robin algorithm is cho-
sen as a scheduling algorithm. Besides the basic scheduling functions,
the output controller performs other functions such as de-segmentation
and error detection, which are needed in order to make a device fully
functional in the real network environment.

Authors in [14] presented the design and prototype of a hardware
implementation of a packet pacing system based on the NetFPGA
system. Results showed that traffic pacing can be implemented with
few hardware resources and without reducing system throughput.

A practical and general coder and decoder of network coding has
been developed in [24] within the NetFPGA board where the entire
logic of the IP layer has been redesigned.

In [12] authors presented a NetFPGA Logic Analyzer with a trig-
gering mechanism that captures the control signals and datapath of
the NetFPGA at the full 125M samples per second for the allotted du-
ration. The triggering mechanism is a programmable pattern matcher
module with mask that can be modified while the system is online.

Authors in [17] presented an approach to provide a robust solution
by remodeling NetFPGA reference architecture for deep packet inspec-
tion such that the packet processing delay is highly negligible. It is dis-
cussed the respective implementation of devising high speed FSMs in a

5



pipelined architecture that has been validated for maintaining through-
put of 1 Gbps with a set of SNORT based signatures. Besides that,
authors in [18] presented a compact implementation for on-line traffic
change detection on a NetFPGA platform as sketch-based algorithms
are widely applied in various networking applications.

Authors in [16] proposed a Layer 2 congestion control mechanism
for high-speed data center networks and a prototyping this mechanism
on NetFPGA.

Finally, [7] describes an implementation of a high-speed firewall on
NetFPGA, in which the authors changed the output port lookup in
order to read the packets content and analyze it.

3 The proposed architecture

As mentioned above, we have been working within the NetFPGA Ref-
erence Router project [3] extending its design. It consists of a set of
Verilog modules working in pipeline. The main component is the User
Data Path: this module takes its inputs from the the input queues
and sends its output to the output queues1. Its primary function is to
elaborate the incoming packets and decide what to route in each of the
output port. In order to achieve this, the User Data Path is composed
of three main sub-modules:

1. the Input Arbiter module, which takes the network packets from
the input queues;

2. the Output Port Lookup module, which processes the network
packets based on the information contained in the routing table;

3. the Output Queues module, which routes network packets in the
correct output queue, based on the decision of the Output Port
Lookup module.

As far as the pipeline is concerned, the network packets are for-
warded from module to module according to predefined schedules.
Each module performs some tasks on the packets and then forward
them during predefined time frames. New modules may be developed
and located in the original pipeline. In our work, we have extended the
standard Reference Router architecture, including three new hardware
modules in order to compute the input and output bit rate and the
ewma bit rate. Moreover, we have improved and generalized an exist-
ing module which limits the output bit rate according to user specific
values. In particular, we have first analyzed the whole Reference de-
sign [5] in order to localize the signals that we were interested for our

1Along this paper we will refer to the input queues as Rx queues and to the output
queues as Tx queues

6



Figure 1: Architecture pipeline of the extended Reference Router.

7



purposes. Then, we were able to modify the original design in order to
feed those signals to the User Data Path module. Then, it was easy to
capture these signals from the new developed modules within the User
Data Path. Figure 1 shows an architecture of the extended Reference
Router. The lighter gray boxes indicate the new modules whereas the
dark gray boxes refer to the original design.

Sections 3.1, 3.2, 3.3 and 3.4 describe, respectively, the Input Bit
Rate Calculator module, the Output Bit Rate Calculator module, the
EWMA Bit Rate Calculator module, and the extended Rate Limiter
module.

3.1 Input Bit Rate Calculator

The Input Bit Rate Calculator is a hardware module that provides
the input bit rate which is received within the input queues from the
Ethernet ports. In particular, this module computes two things:

1. the input bit rate in each queue,

2. the overall bit rate (summing up the four input bit rates).

The reader notices that information needed to compute the input
bit rate is already available within the NetFPGA registers. In partic-
ular, the number of bytes received in each input queue is accessible
through the MAC GRP i RX QUEUE NUM BYTES PUSHED REG
register (where i ranges in {0, . . . , 3} as we have four input queues).
Each of the four registers contains the progressive number of bytes
received in the corresponding input queue. Each register has a fixed
dimension of 32 bits: when the value of the register reaches the maxi-
mum it restarts from 0. In order to compute the bit rate for the input
queue i we need to read the value of the ith register each time window
w and convert the number of received bytes within w in a bit rate
value.

The rationale behind this is the following: when the NetFPGA
works at 125 MHz, each clock cycle lasts 8 ns. If ri1 and ri2 are the two
values read from the MAC GRP i RX QUEUE NUM BYTES PUSH-
ED REG register, respectively, before and after w, the obtained bit
rate for the queue i is equal to:

bitratei = (ri2 − ri1) · w
109
· 1

Vfreq
(1)

where Vfreq is equal to 1 if the current clock frequency is 125 MHz and
2 if it is 62.5 MHz (when the NetFPGA works at 62.5 MHz the clock
cycle becomes 16 ns). The user notices that the lower w, the higher
the sampling frequency that we can calculate; conversely, the higher
w, the lower the resolution. Thus, according to the specific application
or domain where our project will be run, it is possible to give higher

8



CYCLE register w (ns) Minimum
bit rate (kbps)

1 8 · 10 106

2 8 · 102 105

3 8 · 103 104

4 8 · 104 103

5 8 · 105 102

6 8 · 106 10

Table 1: Minimum supported bit rate in kbps for each value of the CYCLE
register and corresponding time w.

Register name Description
CYCLE Input register containing the

time information for sampling
Q0 BITRATE Output register containing bit rate for queue 0
Q1 BITRATE Output register containing bit rate for queue 1
Q2 BITRATE Output register containing bit rate for queue 2
Q3 BITRATE Output register containing bit rate for queue 3

TOTAL BITRATE Output register containing the total bit rate

Table 2: New registers defined within the Input Bit Rate Calculator module.

importance to the sampling frequency rather than the resolution or
vice-versa. This is accomplished by properly setting the value of the
CYCLE register that we have introduced within the Register System.
Table 1 shows the values taken into account for the CYCLE register,
the related time w, and the minimum supported bit rate for each queue
that can be captured. Therefore, if our application needs a higher
sampling rate then we should use lower values of CYCLE as long as
the current bit rate is supported. Thus, if for example the observed
bit rate is lower than 1000 kbps and we want the highest sampling rate
able to capture the bit rate, we need to use a value for CYCLE equal
to 5.

Besides the CYCLE register, we have defined within the Register
System five more registers (Table 2 lists them all) which store the
resulting bit rate. In particular, we store the input bit rate of each
single queue and the overall input bit rate of the router. Clearly, these
registers may be read from any software module.

As far as the existing Verilog modules are concerned, we have
slightly changed the nf2 core.v, mac grp regs.v, and nf2 mac grp.v
modules in order to forward the reg file[′MAC GRP RX QUEUE-
NUM BY TES PUSHED′] signal to the User Data Path module.

This signal has the same value corresponding to the MAC GRP i RX-

9



QUEUE NUM BYTES PUSHED REG registers for i = {0, . . . , 3}. It
counts the number of bytes that have been sent into the Rx queues.
Within the User Data Path we have defined our Input Bit Rate Cal-
culator which takes as input the signal indicated above.

The bit rate computation takes as input this signal for each queue
and it is implemented by the state machine shown in Fig. 2. The state
machine initially idles in the Increment state waiting for the amount
of cycles corresponding to w (which depends on the CYCLE register
value). When w expires it computes the bit rate for each input queue
using Equation (1). The next state is Computation which calculates
the overall bit rate. Finally, the last state is Update which stores in lo-
cal variables the value of each MAC GRP i RX QUEUE NUM BYTES-
PUSHED REG registers, for i = {0, . . . , 3}. We let the reader notes

that we have distributed the computation along three different states
for time constraints purposes.

Figure 2: Diagram of state machine for the Input Bit Rate Calculator mod-
ule.

3.2 Output Bit Rate Calculator

Similarly to the Input Bit Rate Calculator module, the Output Bi-
trate Calculator is a hardware module that provides the output bit
rate for each Tx queue and the overall output bit rate as well. The
same concepts and formulas discussed in Section 3.1 apply even in this
case. Moreover, the same number of registers have been defined for
the output bit rate and have a similar purpose as the ones in 3.1.

The Output Bit Rate Calculator module receives a signal from each

10



of the MAC output queues. This signal has the same value corre-
sponding to the MAC GRP i TX QUEUE NUM BYTES PUSHED-
REG registers for i = {0, . . . , 3}. It counts the number of bytes that

have been sent out of the Tx queues to Ethernet.
We have slightly changed the nf2 core.v, mac grp regs.v, and

nf2 mac grp.v modules in order to forward the reg file[′MAC GRP -
TX QUEUE NUM BY TES PUSHED′] signal to the User Data
Path module. Therefore, defining the Output Bit Rate Calculator
module within the User Data Path allowed us to capture the signals
above and process them. Then we have proceeded analogously to Sec-
tion 3.1 using a similar state machine architecture.

3.3 Bit Rate EWMA Calculator

An exponential moving average (EMA), also known as an exponen-
tially weighted moving average (EWMA), is a type of infinite impulse
response filter that applies weighting factors which decrease exponen-
tially. The weighting for each older data point decreases exponentially,
never reaching zero. The formula that has been taken into account for
the development of an EWMA module of the input bit rate is the
following:

ewma bit raten = α× bit raten + (1− α)× ewma bit raten−1 (2)

where

• the coefficient α represents the degree of weighting decrease, a
constant smoothing factor between 0 and 1. A higher α discounts
older observations faster;

• bit raten is the observation (overall bit rate) at a time period n;
this value is forwarded by the Input Bit Rate Calculator described
above;

• ewma bit raten−1 is the value of the EWMA bit rate at a time
period n− 1.

We have introduced a new register, called ALPHA, which stores
the value for α chosen by the user. The Bit Rate EWMA Calculator
module gets an input signal from the Input Bit Rate Calculator module
which corresponds to the overall input bit rate.

As far as the calculation of the Equation 2 is concerned, the reader
notices that the α parameter could get any decimal value in the range
[0,1]. Taking into account all the possible values in that range would
have meant to complicate a lot the logic and therefore the performances
of the module as floating point numbers multiplication is not standard
in Verilog and requires very high CPU computational power. For such

11



ALPHA register α 1-α operation
0 1 0 bit raten
1 0.125 0.875 (bit raten >> 3) +

((ewma bit raten−1 >> 3) × 7)
2 0.25 0.75 (bit raten >> 2) +

((ewma bit raten−1 >> 2) × 3)
3 0.375 0.625 ((bit raten >> 3) × 3) +

((ewma bit raten−1 >> 3) × 5)
4 0.5 0.5 (bit raten >> 1) +

(ewma bit raten−1 >> 1)
5 0.625 0.375 ((bitraten >> 3) × 5) +

((ewma bit raten−1 >> 3) × 3)
6 0.75 0.25 ((bitraten >> 2) × 3) +

(ewma bit raten−1 >> 2)
7 0.875 0.125 ((bit raten >> 3) × 7) +

(ewma bit raten−1 >> 3)

Table 3: Values for the ALPHA register and corresponding operations of
the second member of Equation 2.

a reason, we have simplified the EWMA formula of Equation 2 by using
right shift and multiplication operators instead of the regular division.
On the one hand, proceeding like that, we could consider only a finite
number of values for α; on the other hand, these values range from 0 to
1 in steps of 0.125 and give enough choice to the user for the EWMA
calculation. Table 3 shows the value of the ALPHA register and the
corresponding values for α, 1− α, and the Equation 2 with only right
shifts and multiplications.

3.4 Extended Rate Limiter

The NetFPGA V2.0 platform contains a rate limiter module for the
second MAC Tx queue only. This module allows us to limit the output
bit rate of the second MAC Tx queue according to 16 values (from 244
kbps to 1Gbps) written into one ad-hoc hardware register. In partic-
ular, within the rate limiter module, eight registers have been intro-
duced (two per each output queue): RATE LIMIT i ENABLE REG
and RATE LIMIT i SHIFT REG for i ranging in {0, . . . , 3}. The for-
mer contains a boolean value indicating that the rate limiter is either
enabled or disabled whereas the latter contains a value which limits
the corresponding output queue bit rate. We have slightly changed
the rate limiter.v, rate limiter regs.v and user data path.v files in

12



order to take into account 32768 fine-grained values of the bit rate2

(and not just 16) and to provide each output queue (not the second
queue only) with such a rate limiter functionalities. Of course, we have
also changed the java-based graphical user interface released together
with the NetFPGA platform in order to take into account the 32768
bit rate levels. This allowed us to limit the output bit rate of each
queue and try different settings in order to create the same conditions
that occur during a congestion.

4 Experimentation

The experimentations we have carried out have been performed using
two NetFPGA hosts systems. One of them (NetFPGAbit rate calc) was
loaded with the project we propose in this paper whereas the other
(NetFPGApkt gen) was loaded with the Packet Generator project [10].
The packet generator application allows Internet packets to be trans-
mitted at line rate on up to four Gigabit Ethernet ports simultaneously.
Data transmitted is specified in a standard PCAP file, transferred to
local memory on the NetFPGA card, then sent on the Gigabit links
using a precise data rate, inter-packet delay, and number of iterations
specified by the user. Figure 3 shows the adopted topology.

Figure 3: Topology used for the experimentation results. Network packets
are sent from NetFPGApkt gen to NetFPGAbit rate calc where they are sent
back to NetFPGApkt gen.

The four ports of the two NetFPGA boards were connected each
other. Therefore, using the Packet Generator we sent network packets
out of the four ports of NetFPGApkt gen to NetFPGAbit rate calc. The

2It was enough to replace within the rate limiter.v Verilog file a shift operation with
a multiplication.

13



packets received within NetFPGAbit rate calc were sent back again to
NetFPGApkt gen in order to calculate the output bit rate value from
NetFPGAbit rate. In order to send the packets from NetFPGApkt gen

we had to carefully prepare the PCAP files by choosing appropriate IP
and MAC addresses, and IP and MAC checksums. Moreover we had to
appropriately set the MAC addresses of the Ethernet ports and IP ad-
dresses of NetFPGApkt gen. In NetFPGAbit rate calc the configuration
has been set up running the SCONE3 software.

Finally, playing with the rate limiter on each of the output queues
we could observe the behavior of our developed modules as far as
the input bit rate and the output bit rate are concerned. In par-
ticular, we have developed a bash script which sends network pack-
ets from NetFPGApkt gen with an average rate of 2 Gbps; moreover
we have written a C program which runs every 1000 ms within the
NetFPGAbit rate calc and increases the rate limiter value of each out-
put queue of a fixed amount. Clearly, the input bit rate read using our
module had to be equal to that sent out from NetFPGApkt gen whereas
the output bit rate value was lower according to what we fixed within
the rate limiter of each queue. Figure 4 shows how the input and out-
put bit rate values read using our modules changed according to the
initial bit rate set within the NetFPGApkt gen and the values in the
rate limiter module. At instant 0 the initial bit rate sent out from
NetFPGApkt gen was set to about 2 Gbps and the rate limiter of each
queue was set to 406.25 Mbps. Then, after each 1000 milliseconds, the
rate limiter of each queue was incremented by 15.62 Mbps. After 6000
milliseconds, the rate limiter was set to 500 Mbps. Thus, as within
the same interval time the input bit rate reached a value slightly lower
than 2 Gbps (the maximum value which could be read by all the out-
put queues each having the current rate limiter set to 500 Mbps), the
output queues were able to read the entire bit rate; therefore the two
curves in the figure overlap. The user notices that when the rate limiter
value was changed, the time needed to make the change effective was
about 500 µs which corresponds to 0.5 ms. That explains the vertical
lines in the figure.

5 Device Utilization

The device utilization of the hardware component of our modules is
almost identical to that of the Reference Router design and is displayed
in Table 4.

3The router SCONE is a user level router that performs IPv4 forwarding, handles
ARPs and various ICMP messages

14



0 1000 2000 3000 4000 5000 6000 7000 8000
1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

2.05
x 10

9

Time (ms)

B
it
 r

a
te

 (
b

p
s
)

 

 

Input bit rate

Output bit rate

Figure 4: Variations of the output bit rate with respect to the input bit rate
according to progressive values of rate limiter for each queue.

Resources XC2VP50 Utilization
Utilization Percentage

Slices 14.160 59%
4-input LUT 19.503 41%

Flip Flops 12.387 26%
Block RAMs 27 11%

External IOBs 360 52%

Table 4: Device utilization for our modules.

15



6 Conclusions and Future Work

Our modules are implemented on the NetFPGA platform and they per-
form input, output and ewma bit rate computation. We have shown
how our modules are effective with simple tests. The implementation
process of our modules were simplified by the pipelined architecture of
the Reference Router. Furthermore, by reusing the Reference Router
design, the development time of our modules was greatly reduced as we
did not have to start from scratch. Our code has been released, follow-
ing the guidelines in [9], to the larger community for re-use, feedback,
and enhancement. The wiki entry of the project can be seen at [6].

7 Acknowledgement

The work described in this paper was performed with the support of
the ECONET project (low Energy COnsumption NETworks), funded
by the EU through the FP7 call.

References

[1] NetFPGA Team. NetFPGA website. http://netfpga.org.

[2] NetFPGA Projects . http://netfpga.org/ foswiki/bin/view/ NetF-
PGA/OneGig/ ProjectTable.

[3] NetFPGA Reference Router project. http://netfpga.org/ fos-
wiki/bin/view/NetFPGA/ OneGig/ReferenceRouterWalkthrough.

[4] NetFPGA Register System. http://netfpga.org/ foswiki/
bin/view/NetFPGA/ OneGig/RegisterSystem.

[5] NetFPGA Walkthrough the Reference Design.
http://netfpga.org/ foswiki/bin/view/ NetFPGA/OneGig/
Guide#Walkthrough the Reference Design.

[6] NetFPGA Projects . http://netfpga.org/ foswiki/bin/view/ NetF-
PGA/OneGig/ InputOutputEwmaBitrate.

[7] Mou-Sen Chen, Ming-Yi Liao, Pang-Wei Tsai, Mon-Yen Luo,
Chu-Sing Yang, and C. Eugene Yeh. Using netfpga to offload
linux netfilter firewall. In 2nd North American NetFPGA Devel-
opers Workshop; Stanford, CA; August 13, 2010.

[8] Michael Ciesla, Vijay Sivaraman, and A. Seneviratne. Url extrac-
tion on the netfpga reference router. Developers Workshop 2009,
2009.

[9] G. A. Covington, G. Gibb, J. Naous, J. Lockwood, and N. McK-
eown. Encouraging reusable network hardware design. IEEE

16



International Conference on Microelectronics System Education
(MSE), San Francisco, CA, 2009.

[10] G. Adam Covington, Glenn Gibb, John W. Lockwood, and Nick
Mckeown. A packet generator on the netfpga platform. In Proceed-
ings of the 2009 17th IEEE Symposium on Field Programmable
Custom Computing Machines, FCCM ’09, pages 235–238, Wash-
ington, DC, USA, 2009. IEEE Computer Society.

[11] Glen Gibb, John W. Lockwood, Jad Naous, Paul Hartke, and Nick
McKeown. Netfpga. an open platform for teaching how to build
gigabit-rate network switches and routers. IEEE Transactions on
Education, 2008.

[12] Andrew Goodney, Shailesh Narayan, Mengchen Wang, Peigen
Sun, Vivek Bhandwalkar, and Young H. Cho. Netfpga logic an-
alyzer. In 2nd North American NetFPGA Developers Workshop;
Stanford, CA; August 13, 2010.

[13] Adwait Gupte and John Lockwood. Precise latency comparison
module for the netfpga. In 2nd North American NetFPGA De-
velopers Workshop; Stanford, CA; August 13, 2010.

[14] Y.S. Hanay, A. Dwaraki, and T. Wolf. High-performance im-
plementation of in-network traffic pacing. In High Performance
Switching and Routing (HPSR), 2011 IEEE 12th International
Conference, pages 9–15, 2011.

[15] Jinghe Jin, Nazarov Nodir, Chaetae Im, and Seung Yeob Nam.
Mitigating http get flooding attacks through modified netfpga ref-
erence router. In 1st Asia NetFPGA Developers Workshop; Dae-
jeon, Korea; June 14, 2010.

[16] Abdul Kabbani and Masato Yasuda. Data center quantized con-
gestion notification (qcn): Implementation and evaluation on netf-
pga. In 1st Asia NetFPGA Developers Workshop; Daejeon, Korea;
June 14, 2010.

[17] Bokil Kanchan. Remodeling the netfpga architecture for content
processing and filtering. In Developers Workshop; Stanford, CA;
August 13, 2010.

[18] Yu-Kuen Lai, Nan-Cheng Wang, Tze-Yu Chou, Chun-Chieh Lee,
Theophilus Wellem, and Hargyo Tri Nugroho. Implementing on-
line sketch-based change detection on a netfpga platform. In 1st
Asia NetFPGA Developers Workshop; Daejeon, Korea; June 14,
2010.

[19] J.W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke,
J. Naous, R. Raghuraman, and J. Luo. Netfpga - an open platform
for gigabit-rate network switching and routing. In In International
Conference on Microelectronic Systems Education, 2007.

17



[20] Alfio Lombardo, Carla Panarello, Diego Reforgiato, Enrico San-
tagati, and Giovanni Schembra. A module for packet hijacking
in netfpga platform. In Proceedings of the 2011 14th Euromicro
Conference on Digital System Design, DSD ’11, pages 283–286,
Washington, DC, USA, 2011. IEEE Computer Society.

[21] Alfio Lombardo, Diego Reforgiato, and Giovanni Schembra. An
accelerated and energy-efficient traffic monitor using the netfpga
(abstract only). In Proceedings of the 19th ACM/SIGDA interna-
tional symposium on Field programmable gate arrays, FPGA ’11,
pages 277–277, New York, NY, USA, 2011. ACM.

[22] Danilo Misovic, Nikola Ljumovic, Milutin Radonjic, and Igor
Radusinovic. Implementation of the crosspoint-queued switch’s
output controller on the netfpga platform. In Proceedings of EL-
MAR 2011, ELMAR ’11, pages 235–2238, 2011.

[23] Hamed Tabatabaei and Yashar Ganjali. Preserving pacing in real
networks - an experimental study using netfpga. In 2nd North
American NetFPGA Developers Workshop; Stanford, CA; August
13, 2010.

[24] Minglong Zhang, Hui Li, Fuxing Chen, Hanxu Hou, Huiyao An,
Wei Wang, and Jiaqing Huang. A general co/decoder of network
coding in hdl. In Network Coding (NetCod), 2011 International
Symposium, pages 1–5, 2011.

18


