A flexible router for on-fly dynamic packet
management in NetFPGA platform

Alfio Lombardo, Carla Panarello, Diego Reforgiato, Enrico Santagati and Giovanni Schembra
Department of Electrical, Electronic, Informatics Engineering (DIEEI)
University of Catania, V.Le A. Doria 6, 95125 Catania
Email: {alfio.lombardo, carla.panarello, diego.reforgiato, enrico.santagati, giovanni.schembra}@dieei.unict.it.

Abstract—' The NetFPGA platform not only is used by
instructors to show how to build line rate Ethernet switches and
Internet Protocol (IP) routers, but allows everyone to prototype
and develop multi-Gigabit networking applications. It is an open
platform and user community developed to enable researchers
to build high speed, hardware-accelerated networking systems.
The paper starts from the reference router implementation on
the NetFPGA platform to realize an open flexible and high-
performance router that allows the implementation of any
strategy for on-fly packet modification. More specifically, the
proposed router works at user data path level and modifies packet
fields if certain conditions defined by the user through NetFPGA
registers are satisfied. The project has been implemented as a
fully open-source project and can also be used as an exemplar
project on how to build and distribute NetFPGA applications.
All the code (Verilog, system software, graphical user interface,
verification scripts, makefiles, and support tools) can be freely
downloaded from the NetFPGA.org website.

I. INTRODUCTION

In the last decade the enormous innovation in computer
networks and network devices has led a capillary diffusion
of the Internet in the world. Unfortunately, almost the totality
of network devices today used in the Internet as IP routers,
bridges, hubs and switches are compacted and closed platforms
which are not possible to change or enhance. Their functional-
ities are limited and restricted by vendors who are often hostile
to allow researchers and programmers to modify and extend
their products. As a consequence, this is causing a substantial
decrease in the rate of innovation and improvement.

At the same time a lot of algorithms have been proposed in
the past literature that require to be implemented in network
devices to improve performance at both the network and
application levels.

A relevant example of this matter is constituted by the need
of dynamically changing the IP address of both incoming and
out-coming packets crossing an access router to realize a smart
proxy server working according to user-defined strategies. A
possible application of this is the access router of a video
server farm where many servers are used to balance the load
of coding and streaming applications. In this case the same IP

IThe research leading to these results has received funding from the
European Union Seventh Framework Programme (FP7/2007-2013) under
grant agreement n 258454 (Collaborative Project "ECONET”). Moreover,
the work leading to this invention has benefited from a fellowship of the
Seventh Framework Programme of the European Community [7 PQ/2007-
2013] regarding the Grant Agreement n. PIRG03-GA-2008-231021.

address can be used by all the clients, and incoming packets
can be dynamically redirected to different servers according
to the required service or the current load of each server,
following a user-defined strategy. Although this problem can
be solved in other ways (see for example [1]) with other tech-
niques like TCP forwarding, connection splicing, IP tunneling,
that best way to not alter router performance is to change
IP addresses runtime. Another possible application of on-fly
IP address change is for mobile IP within the same local
area network: if a user needs to redirect traffic to another
host without changing the local host IP addresses in order
to not lose privileges associated to its IP address, it can
issue a request to the access router to redirect packets to
the new IP address, making a sort of call redirection, but
at the IP level. Besides the above examples, an infinity of
other examples can be carried relating the need of managing
TCP or IP packets on fly, like for example, TCP header fields
modifications to improve TCP performance in particular en-
vironments ([2],[31,[4],[5],[61.[7]), packet priority variations,
service differentiations, smart firewall implementations, data
encryption, and so on. Of course, all the applications cited
above cannot be realized and customized in not open network
devices. A first attempt to solve this problem is the use
of software routers [8],[9],[10] with their implementation on
standard personal computers.

However, with this approach routing and forwarding opera-
tions are all performed in the PC motherboard, and therefore
both the CPU and the communication bus constitute a severe
bottleneck that strongly limit performance precluding their
applications in large scale environments.

With all this in mind, the target of this paper is to realize
an open flexible and high-performance router that allows the
implementation of any strategy for on-fly packet modification.
To this purpose the router has been implemented over the
NetFPGA platform [11], extending the NetFPGA reference
router project [12] with capabilities never shown so far, like
for example runtime computing TCP and IP header checksums
in hardware.

The NetFPGA platform not only is used by instructors to
show how to build line rate Ethernet switches and Internet
Protocol (IP) routers, but allows everyone to prototype and
develop multi-Gigabit networking applications. It is an open
platform and user community developed to enable researchers
to build high-speed, hardware-accelerated networking systems.

The open-source NetFPGA distribution consists of gateware,
hardware and software. As far as the hardware is concerned,
it consists of a PCI card that has an FPGA board, memory
(SRAM and DRAM), and four 1-GigE Ethernet ports (a new
version of the NetFPGA platform has been recently launched
with four 10-GigE Ethernet ports). Source code and scripts
are provided to build reference designs, enhance a design,
or create new applications using supplied libraries. Hardware
description source code (gateware) and software source code
are freely available online. The NetFPGA platform not only
consists of the NetFPGA board, but also the development
environment and scripts that allow for rapid prototyping and
development of hardware projects. The development environ-
ment is available from the NetFPGA website [11]. Reference
designs comprised in the system include an IPv4 router,
an Ethernet switch, a four-port NIC, and SCONE (Software
Component of NetFPGA). Researchers have used the platform
to build advanced network flow processing systems. A single
NetFPGA board can route packets over any number of subnets,
and multiple NetFPGA boards can be installed in the same
PC. In addition, there are several user-contributed projects
available such as the Netflow probe, OpenFlow switch, the
Packet Generator, and the RCP router.

The proposed flexible router allows users to define any
strategy to manage packets, changing any field of both TCP
or IP headers, as for example the IP source and destination
addresses, the TCP source and destination ports, the TCP
advertised window size, etc.. Moreover, the TCP and/or IP
checksums are possibly recomputed and stored into the pack-
ets. We have called the new project the flex router. It is
available at [13].

This paper is structured as follows: Section II introduces the
NetFPGA platform; Section III describes the modifications we
have applied to the reference router project; Section IV reports
the test performed using our new module and comparisons
against other solutions we have thought; Section V shows the
device utilization of our system. Finally, Section VI ends the
paper with the conclusions and potential future works.

II. NETFPGA PLATFORM

The NetFPGA is an accelerated network hardware that aug-
ments the function of a standard computer. It consists of three
parts: hardware, gateware, and software. The development
board itself is a PCI card that can be installed in any PC
with an available full-length slot. In more detail, the hardware
of the board has the following core components:

 Xilinx Virtex-II Pro 50

o 4x1 Gbps Ethernet ports using a soft MAC core (recently,

the new version of the NetFPGA has 4x10 Gbps Ethernet
ports)

o Two parallel banks of 18 MBit Zero-bus turnaround

(ZBT) SRAM

e 64 MBytes DDR DRAM
The FPGA directly handles all data-path switching, routing,
and processing of Ethernet and Internet packets, leaving soft-
ware to handle only control-path functions [14]. Hosted on

the board are a user-programmable FPGA (with two Pow-
erPC processors), SRAM, DRAM, and four 1Gbps Ethernet
ports (10Gbps Ethernet ports in the newer version). Software
and gateware (Verilog HDL source code) are available for
download under an open source license from the NetFPGA
website [11]. This allows jump starting prototypes and quickly
building on existing designs such as an [PV4 router or a NIC.
The gateware is designed to be modular and easily extensi-
ble. Designs are implemented as modular stages connected

===« Reglster Bus &
— PacketBus Register |jO PCI

NetFPGA

Module,

DMA DMA
from to
host Host
— — =
r] L i

From
Ethernet

To

Fig. 1. Modular NetFPGA pipeline structure. The high-bandwidth packet
bus (in red) is used for packet processing while the register bus (in blue) is
used to carry control and status information between software modules and
the hardware.

together in a pipeline, allowing the addition of new stages
with relatively small effort [12]. The pipeline is depicted in
Figure 1.

It is possible to develop on top of the platform Ether-
net switches, Internet Prototcol (IP) routers using hardware
rather than software, precise network measurement systems,
and hardware-accelerated network processing systems. The
platform can be used by researchers to prototype advanced
services for next-generation networks.

Accent Technology [15] offers pre-assembled NetFPGA
computer systems as approved by Stanford University. These
pre-built and completely tested Linux-based computers are
available in a compact desktop cube or standard 1U rack-
mountable server configuration. In the researcher laborato-
ries, the NetFPGA is usually installed inside a desktop PC
so researchers can access the hardware [16], [17]. Several
projects have already been developed in the NetFPGA (see
the NetFPGA project page [18]).

III. SYSTEM ARCHITECTURE

Our system consists of two main components: hardware and
software. The hardware component is an extended NetFPGA
IPv4 reference router that, for each packet satisfying user de-
fined constraints, changes its fields accordingly. The software
component is represented by a graphical user interface which
writes the constraints defined by the users into new NetFPGA
registers that we have created.

| Ethernet

A. Hardware - Changes to the reference router project

Our design modifies the User Data Path module of the
reference router. Fig. 2 shows the reference router layout with
the addition of the new flex_router_preprocess and flex_router
modules. The user_data_path.v file has been altered to in-
clude the definitions of flex_router_preprocess and flex_router
modules and their wire connections to the output_port_lookup
and output_queues submodules. The new modules have there-
fore been inserted into the reference router pipeline. The

MAC || cPu || mac || cru || mac || cru || mac || cru
RQ || R || Ra || Ra || RQ || RQ || Ra || RQ

in_data
in_ctrl

Input Arbiter Uger Defined
a

Flex Rauter
Preprocess

Output Port
Lookup

out_datal 1P_chackeum
e 5 mooiaum
Preprocess
in_data
in_ctrl
U

Output Queues

Flex Router
Registers

<

Flex Router

mac || cru || mac || cru || mac || cru || mac || cru
™| maf vl vl | mal vl

Fig. 2.
flex_router_preprocess and flex_router are new
user_data_path has been altered accordingly.

Submodule layout of the modified User Data Path. The
submodules and the

flex_router_preprocess takes as input data provided by the
output_port_lookup module; hence it evaluates the users data
provided using new defined registers and computes the new IP
and TCP checksums for each incoming packet which satisfies
these rules. Once computed, it enables the next module, the
flex_router, allowing it to receive the new computed values.
The flex_router module, hence, writes into the appropriate
packet fields, the data specified by the users and the new
computed checksums where needed.

The reason why we have used two Verilog modules and
not just one is related to the word alignment for reference
router TCP packets depicted in Fig. 3. Since the destination
ip address is split into two different words, we need to
read the following word in order to extract the complete
value needed to check the user defined rules and for IP
checksum computation purposes. Moreover, the two blocks
structure works well even if we want to extend the flex router
functionality to take into account any other field located into
the payload data; in fact, as the TCP checksum lies before the
payload data, we can not write it before its computation.

For such reasons, using the flex_router_preprocess module
we are able to just read the TCP packet fields and compute the
new checksum according to the fields specified by the user.
The flex_router_preprocess module will transfer the old fields
values and the new checksums to the flex_router module. Once
the input data are ready, the flex_router module will compare
the old field values (passed by flex_router_preprocess module)
with those defined by the user (read by NetFPGA registers). If
they match, the flex_router module will write into the relative

in_data

Words 63:48 47.32 31:16 15:0
1 eth_da eth_sa
2 eth_sa type ver, IHL, TOS
3 total_length | identification @ fiags, frag_off TTL, proto
4 hecks! D D
5 dst_ip src_port dst_port sequence
B sequence ack data_off, flags
7 urg_pointer option
8 option
9

payload
Fig. 3. NetFPGA word alignment for TCP packets. Fields shaded in blue

are inspected and modified according to the users rules. Fields shaded in red
are the IP and TCP checksums which the module flex_router will update.

words (the forth, the fifth and seventh, respectively) the fields
specified by the user, and the IP and TCP checksums.

Both the flex_router_preprocess and flex_router modules
evolve according to the state machine shown in Fig. 4.
The flex_router module waits for the rd_preprocess signal
coming from the flex_router_preprocess module. This signal
will be sent when the checksum computation ends. The
flex_router_preprocess module uses two FIFOS to store data:
the first one is used to store words already processed which
have to be passed to the flex_router module. Words will not
be passed to the flex_router module until the rd_preprocess
signal is sent. The second FIFO is used to store the IP and
TCP checksum of the flex_router_preprocess module, which
are later used by flex_router module.

<h\4

R SKIP_HDR —

~
WORD2_CHECK
T _IPV4
\
| o
WORD3_CHEK . |
cP

3 \|

WORD4_IP \\\
_ADDR

-
WORDS5_TCP
_PORT
‘ |
WORD6_TCP [
_FLAGS
- /

WORD7_TCP
_CHECKSUM /

_/

Fig. 4. Diagram of State Machine Used by the flex_router_preprocess and
flex_router modules.

PAYLOAD

The state machine for flex_router_preprocess initially idles
in the SKIP_HDR state waiting for the IP version field,
skipping all the other words containing not relevant data for
our purposes. Once the word containing the IP version arrives,
the state machine moves to WORD2_CHECK _IPV4 where

the IP version is checked to be IPv4. If it does not, then
the machine moves straight to the PAYLOAD state where
all the remaining packet words are skipped until the packet
ends. If the IP version is IPv4 then the next visited state
is WORD3_CHECK_TCP where the information about the
next level protocol are read. If the protocol is not TCP
then the state machine moves again into the PAYLOAD state;
else, the next reached state is WORD4_IP_ADDR where the
information about the IP checksum, the IP source address
and part of the IP destination address are taken into account
for the new IP checksum computation and stored in order
to be sent later to the flex_router module. The next state
is then WORDS5_TCP_PORT where the remainder of the IP
destination address, the source port and the destination port are
fetched and used as into the previous state; moreover, in this
state the computation of the new IP checksum ends as we read
the whole IP destination address. WORD6_TCP_FLAGS is the
following state where the underlying word is skipped as it does
not contain relevant fields neither for checksum computation
nor for field replacement. Then, the state WORD7_TCP._-
CHECKSUM is reached. Here, we read the values of the
advertised window size and the old TCP checksum field; in
this state the computation of the new TCP checksum ends as
well. Finally, the state machine moves to the PAYLOAD state,
waits for the end of the current packet, and starts again with
the SKIP_HDR state.

The state machine for flex_router module is similar to
the one just described above for the flex_router_preprocess.
During the state WORD4_IP_ADDR the new IP checksum
(which is an output of the previous module) is written to-
gether with the new source IP address and part of the new
destination IP address if requested by the user. During the
state. WORDS5_TCP_PORT, the remaining part of the new
IP destination address, the new source port and the new
destination port are written as well if necessary. Finally, in
state WORD7 _TCP_CHECKSUM, the new advertised window
size and the new TCP checksum are written. The reader notices
that the IP and TCP checksums are written only if any of the
old values have changed.

Let us consider that the Internet checksum calculation is
very demanding as far as the computational resources are
concerned (as specified in [19]). Whereas the IP checksum
computation would affect four words (for a total of 20 bytes),
the TCP checksum affects the whole packet which can be
much bigger: this results in heavier computation for the
design. As the operations performed are directly executed
in hardware we need to decrease the computational load as
much as possible: doing like that we would reduce the design
complexity of the project. Luckily, the Internet checksum
incremental formula defined into [20] comes to our needs.
As reported in [20] the formula is defined as:

H =~ (N H@ ~ SUMpld @Sumnew)

where H is the old checksum, H' is the new checksum,
SuMorq and sum,e,, are the ones’ complement sum computed
over source IP address, destination IP address, source port,

destination port, window size of the old and new values re-
spectively (the only fields that change their value). ~ indicates
a bit-wise complement operation, and € indicates a ones’
complement sum operation. The reader notices that, if the sum
within parenthesis has carry, we need to perform a further sum-
mation of the carry before applying the most external ones’
complement. As implicitly reported into the state machine
description of the flex_router_preprocess module, we use the
Internet checksum incremental formula as we do not read the
entire packet but only the necessary fields.

The NetFPGA platform works like every digital electronic
devices and, therefore, there is a clock signal which is the
basis of each operation. As far as the reference router project
is concerned, during each clock cycle, a word of a given
incoming packet is processed. The reader notices that each
state of the machine defined above lasts one clock cycle where
fields of the current word are fetched and potential operations
on them are executed. Given that the NetFPGA has a core
clock that runs at 125 MHz, each clock cycle lasts therefore
about 8 ns. Consequently, all the operations executed within
one clock cycle have to meet this time constraint. In order to
reduce the number of operations performed within each clock
cycle, we have distributed those on the machine states having
a lower computational load.

B. User Defined Rules

The user is allowed to decide which packet to modify
by using a set of rules through a Graphical User Interface
(GUI) developed in JAVA. In Fig. 5 a screenshot of the JAVA
application is displayed. The column on the left represents
the requirements that a packet has to satisfy; if it does, then,
the values on the second column are written in the relative
packet fields. As shown in Fig. 5, packets having as IP
source 192.168.1.2, as IP destination 192.168.2.2 and as TCP
source port 5554 will satisfy the user defined rule: the packets
satisfying the rules will be hijacked: their IP source and the
advertised window size fields will be overwritten, respectively,
with the new values 192.168.3.2 and 52.

Flex Router

Initial Source IP [192.168.1.2 New Source IP [0.0.0.0
— ’7192 L6522 New Destination IP [192.168 3.2

New Source Port TCP [0
New Destination Port TCP [0
New TCP Window Size [52

rTCP (5554
n Port TCP |0

Initial Desti

Fig. 5. Graphical User Interface.

When the user specifies the values, once he clicks on the
write button, the new values will be passed from the host
computer to the NetFPGA board which will write them into
registers introduced in our design as remarked in [21]. If any
of the parameters are not specified, then the relative field is
not taken into account. The flex_router_preprocess module
reads the registers in order to understand whether the relative
field values have to be considered for the Internet checksum
computations. The flex_router module uses the registers to
check if the current packet satisfies the user defined rules.
Packets which satisfy the rules on the first column will be

updated with the new values expressed in the second column of
the GUI. Moreover, the TCP and IP checksums will be updated
accordingly. More specifically, the GUI reads and writes the
NetFPGA registers using the system calls regread and regwrite
(they are two C programs which come together with the NetF-
PGA platform). The Verilog modules flex_router_preprocess
and flex_router use the generic_regs.v module defined into the
Verilog utils library in order to access them. In particular, the
the registers we have used are referenced as NetFPGA software
registers and allowed us to read their contents from hardware
and write new values from software (the GUI). Conversely,
NetFPGA hardware registers allow us to write new values
from hardware and read their contents from software.

IV. EXPERIMENTATION

We first verified our implementation in the simulation
platform by using the Perl testing library provided by the
NetFPGA. The library allowed us to create packets with
arbitrary values into the IP and TCP headers. We have used
Wireshark [22] to test our project for both simulation and
verification. As far as the simulations are concerned, we have
used it in order to capture real TCP packets and export them
into simulation scripts. This allowed us to have a more realistic
scenario for testing. For verification, Wireshark was useful to
check that the new IP and TCP checksums together with the
new header fields were correctly written into incoming packets
satisfying the user defined rules. We have also used and run
the regression tests of the reference router to ensure that our
modifications did not break the standard functionality of the
reference router. The availability of these tests greatly reduced
the time required to test our design.

NetFPGA Host

i =
-]

/ ¥\

’ NetFPGA Rouler 192168.2.2
162.168.1.2

Fig. 6. Topology used for our experiments. Red line indicates the path
of packets for the Click Modular Router. The orange line shows the path of
packets for the software version of the flexible router; the green line represents
the path of packets for the flex router project.

Having verified the correctness of our implementation, we
ran different experiments in order to test our system with
and without the NetFPGA platform. We have compared our
system with the original reference router project. The same
features have also been developed using the original reference
router and writing a C program in order to capture network
packets, change the TCP and IP fields, and compute the new
checksums. We have called such a system the software version
of the flexible router. Finally, we have installed the Click

Modular Router into the same computer hosting the NetFPGA
board and developed the same features into the Click. Fig. 6
shows the topology we have used for our experiments. PC;
having IP address 192.168.1.2 is connected to the NetFPGA
port nf2cl whereas PCy with IP address 192.168.2.2 is
connected to the NetFPGA port n f2c2.

As described above, the first two experiments have been per-
formed using the NetFPGA platform but with different hard-
ware designs. The first one is represented by our flex router
project (the reference router augmented with flex_router_pre-
process and flex_router modules). The other is represented
by the reference router modified in order to forward each
incoming packet to the CPU port and allow, using a software
written in C, to hijack packets as the flex router project does.
Finally, we have developed a new module using the Click
Modular Router [8] which performs the same operations of
the flex router project but via software. The results of the three
experiments have been compared to the ones of the original
reference router design. Fig. 6 shows three different paths that
incoming packets follow for each system just described. As
user may notice, for the Click Modular router, the packets
following the red path are forwarded trough the software
router (which resides into the host computer) to the destination
without affecting the NetFPGA board. Packets into the orange
path are first forwarded to the NetFPGA router which switch
each of them to the host computer in order to be processed
by our software implementation of the flex router. Then, they
are forwarded back to the NetFPGA router which sends them
to the final destination. Finally, the green line represents the
path of incoming packets processed by our flex router project
and they are forwarded through the NetFPGA router to the
final destination. Each experiment shows the throughput of the
output queue for a HTTP file transfer session of 60 seconds.
Figures 7, 8, 9 show the throughput for each implemented
system described above with respect the throughput of the
original reference router project. The reader notices that the
flex router has the highest throughput with respect to the other
two systems as its throughput is the closest to the one of
the reference router. It is obvious that the original reference
router has higher performance than the flex router as this last
has been obtained augmenting the original reference router
project with other two modules which slightly increase the
overall complexity.

V. DEVICE UTILIZATION

The device utilization of the hardware component of the
flex router project is just a little bit higher than the one used
by the reference router and it is displayed in Table I. Table II
shows the device utilization of the reference router project.

VI. CONCLUSIONS AND FUTURE WORK

An infinity of examples can be carried relating the need of
managing TCP or IP packets on fly, like for example, TCP
header fields modifications to improve TCP performance in
particular environments, packet priority variations, service dif-
ferentiations, smart firewall implementations, data encryption,

Throughput [Kb]

Throughput [Kb]

Throughput [Kb]

Resources XC2VP50 Utilization Utilization
Percentage
Slices 11201 out of 23616 47%
4-input LUTS 16413 out of 47232 34%
Flip Flops 9349 out of 47232 19%
Number of BRAMs 37 out of 232 15%
Number of bonded IOBs 360 out of 692 52%
Number of GCLKs 8 out of 16 50%
Number of DCMs 6 out of 8 75%
TABLE 1
DEVICE UTILIZATION FOR THE flex_router_preprocess AND flex_router
MODULES.

and so on. Of course, all the applications cited above cannot
be realized and customized in not open network devices.

With all this in mind, the target of this paper has been
to realize an open flexible and high-performance router that
allows the implementation of any strategy for on-fly packet
modification. To this purpose the router has been implemented
over the NetFPGA platform, extending the NetFPGA reference
router project with capabilities never shown so far, like for
example runtime computing TCP and IP header checksums in
hardware.

Our system has been implemented on top of the NetF-
PGA platform. In particular, it augments the reference router
project with flex_router_preprocess and flex_router modules.
It can modify different TCP and IP packet fields according to
rules defined by the user through a graphical user interface
developed in JAVA. It also computes the IP and TCP Internet
checksum in order to validate the packets with the new values.
To the best of our knowledge, there is no much in literature
about working with the reference router project.

Our code has been released, following the guidelines in [24],
to the larger community for re-use, feedback, and enhance-
ment. It can be downloaded from [13]. In the future, taking as
starting points the works in [25] and [26], we will analyze the
energy consumption of each module of the reference router
included the ones we have proposed in this paper.

55 | | | | . :
Flex Router
5F Reference Router
/ A
451 / \ B
/\ v Ao \ o/
/o \
AW / A\ \ \ \ WAV
L / VAL NAS Y/ VNN A
T JV \\// VV APV VA "
35 \ v —
Iy

RV]

251 ,

ol 1

15 1

1k 1

05 ,

0 \ \ \ \ \ ,

0 10 20 30 40 50 60
time [s]
Fig. 7. Flexible Router throughput.
x10*

55 . T T .

- Soft Flex Router

5 Retfarencs Rou.ar

450 E

ab B

!A‘

35| A Y

i j’

a3k Y 4

250 g

ok B

15

1

05k E

0 . . . \

a 10 20 30 40 50 50

timne [g]
Fig. 8. Software Flexible Router throughput.

x10°

55 ! :) :
—— Click Router
5r — Reference Router
A /

45 /1 A h/ A 7
ANVAN AN AN
(VANAUVAVIRY AVAVad'

4F V \v/ \v/ v [V V \/\/V/\ /) x \ / \/ \/\,

35F /W / \ :

AR |

251 B

ol 1

15} |

1k S - TN - 7 4

e \; //
051 ~ //’ B
0 , \ , , \ .
0 10 20 30 40 50 60

time [s]

Fig. 9. Click Router throughput.

Resources XC2VP50 Utilization Utilization
Percentage
Slices 9699 out of 23616 41%
4-input LUTS 14332 out of 47232 30%
Flip Flops 8221 out of 47232 17%
Number of BRAMs 27 out of 232 11%
Number of bonded IOBs 360 out of 692 52%
Number of GCLKs 8 out of 16 50%
Number of DCMs 6 out of 8 75%
TABLE II

DEVICE UTILIZATION FOR THE ORIGINAL REFERENCE ROUTER PROJECT.

REFERENCES

[1] O. Spatscheck, J. S. Hansen, J. H. Hartman, and L. L. Peterson,
“Optimizing tcp forwarder performance,” IEEE/ACM TRANSACTIONS
ON NETWORKING, vol. 8, no. 2, 2000.

[2] P. Papadimitriou and V. Tsaoussidis, “Abstract on tcp performance over
asymmetric satellite links with real-time constraints,” 2007.

[3] C. Metz, “Tcp over satellite... the final frontier,” Journal IEEE Internet
Computing, vol. 3, no. 1, 1999.

[4]

[5]
[6]

[7]

[8]

[9]

[10]
[11]
[12]

[13]
[14]

[15]
[16]

(17]

(18]

[19]
[20]

[21]

[22]
[23]
[24]

[25]

[26]

I. F. Akyildiz, G. Morabito, and S. Palazzo, “Tcp-peach: A new conges-
tion control scheme for satellite ip networks,” IEEE/ACM Transactions
on Networking, vol. 9, pp. 307-321, 2001.

A. Bakre and B. R. Badrinath, “I-tcp: Indirect tcp for mobile hosts,”
Proc. 15th Int. Conf. Distributed Computing Syst. (ICDCS), 1995.

H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H. Katz, “A
comparison of mechanisms for improving tcp performance over wireless
links,” IEEE/ACM Transactions on Networking, vol. 5, no. 6, 1997.
M. Barbera, A. Lombardo, C. Panarello, and G. Schembra, “Queue
stability analysis and performance evaluation of a tcp-compliant win-
dow management mechanism,” IEEE/ACM Transactions on Networking,
vol. 18, no. 4, pp. 1275-1288, 2010.

K. Eddie, M. Robert, C. Benjie, J. John, and K. M. Frans, “The click
modular router,” ACM Trans. Comput. Syst., vol. 18, no. 3, pp. 263-297,
2000.

G. Calarco, C. Raffaelli, G. Schembra, and G. Tusa, “Comparative
analysis of smp click scheduling techniques,” Proc. QoS-IP, pp. 379—
389, 2005.

“Zebra, http://www.zebra.org.”

“Netfpga team. netfpga website. http:/netfpga.org.”

J. Naous, G. Gibb, S. Bolouki, and N. McKeown, “Netfpga: reusable
router architecture for experimental research,” in PRESTO 08: Pro-
ceedings of the ACM workshop on Programmable routers for extensive
services of tomorrow, pages 17, New York, NY, USA, 2008. ACM.
“http://netfpga.org/foswiki/bin/view/netfpga/onegig/ flexrouter.”

J. W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous,
R. Raghuraman, and J. Luo, “Netfpga - an open platform for gigabit-
rate network switching and routing,” in International Conference on
Microelectronic Systems Education, 2007.
“http://www.accenttechnologyinc.com/.”

G. Gibb, J. W. Lockwood, J. Naous, P. Hartke, and N. McKeown,
“Netfpga: An open platform for teaching how to build gigabit-rate
network switches and routers,” in IEEE Transactions on Education,
August, 2008.

G. Watson, N. McKeown, and M. Casado, “Netfpga - a took for network
research and education.” in 2nd Workshop on Architecture Research
using FPGA Platforms (WARFP), February, 2006.

“Netfpga project table. http://netfpga.org/foswiki/bin/view/netfpga/onegig/
projecttable.”

“Computing the internet checksum, http://tools.ietf.org/html/rfc1071.”
“Computation of the internet checksum via incremental update,
http://www.apps.ietf.org/rfc/rfc1624.html.”
“http://www.netfpga.org/foswiki/bin/views/netfpga/
onegig/registersystem.”

“Wireshark. http://www.wireshark.org.”

M. Ciesla and V. Sivaraman, “Url extraction n the netfpga reference
router,” NetFPGA Developers Workshop, 2009.

G. A. Covington, G. Gibb, J. Naous, J. Lockwood, , and N. McKeown,
“Methodology to contribute netfpga modules,” in International Confer-
ence on Microelectronics Systems Education, 2009.

V. Sivaraman, A. Vishwanath, Z. Zhao, and C. Russel, “Profiling per-
packet and per-byte power consumption in the netfpga gigabit router,”
IEEE INFOCOM Workshop on Green Communications and Networking
(GCN), 2011.

A. Vishwanath, Z. Zhao, V. Sivaraman, and C. Russell, “An empirical
model of power consumption in the netfpga gigabit router,” [EEE
Advanced Networks and Telecommunication Systems (ANTS), 2010.

